Tom Augspurger created ARROW-1897:
-------------------------------------
Summary: Incorrect numpy_type for pandas metadata of Categoricals
Key: ARROW-1897
URL: https://issues.apache.org/jira/browse/ARROW-1897
Project: Apache Arrow
Issue Type: Bug
Components: Python
Affects Versions: 0.8.0
Reporter: Tom Augspurger
Fix For: 0.9.0
If I'm reading
http://pandas-docs.github.io/pandas-docs-travis/developer.html#storing-pandas-dataframe-objects-in-apache-parquet-format
correctly, the "numpy_type" field of a `Categorical` should be the storage
type used for the *codes*. It looks like pyarrow is just using 'object' always.
{{
In [1]: import pandas as pd
In [2]: import pyarrow as pa
In [3]: import pyarrow.parquet as pq
In [4]: import io
In [5]: import json
In [6]: df = pd.DataFrame({"A": [1, 2]},
...: index=pd.CategoricalIndex(['one', 'two'], name='idx'))
...:
In [8]: sink = io.BytesIO()
...: pq.write_metadata(pa.Table.from_pandas(df).schema, sink)
...:
json.loads(pq.read_metadata(sink).metadata[b'pandas'].decode('utf-8'))['columns'][-1]
...:
Out[8]:
{'field_name': '__index_level_0__',
'metadata': {'num_categories': 2, 'ordered': False},
'name': 'idx',
'numpy_type': 'object',
'pandas_type': 'categorical'}
}}
>From the spec:
> The numpy_type is the physical storage type of the column, which is the
> result of str(dtype) for the underlying NumPy array that holds the data. So
> for datetimetz this is datetime64[ns] and for categorical, it may be any of
> the supported integer categorical types.
So 'numpy_type' field should be something like `'int8'` instead of `'object'`
--
This message was sent by Atlassian JIRA
(v6.4.14#64029)