Your message dated Sat, 31 Aug 2024 12:34:14 +0100
with message-id 
<9e3e8b8cd0db3b52d4adb2cfad04baa007c8e3e8.ca...@adam-barratt.org.uk>
and subject line Closing bugs for 12.7
has caused the Debian Bug report #1077515,
regarding bookworm-pu: package putty/0.78-2+deb12u2
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
1077515: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1077515
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Package: release.debian.org
Severity: normal
Tags: bookworm
X-Debbugs-Cc: pu...@packages.debian.org
Control: affects -1 + src:putty
User: release.debian....@packages.debian.org
Usertags: pu

[ Reason ]
Security fix CVE-2024-31497

[ Impact ]
Vulnerable biased nonce generation is still here.

[ Tests ]
Full crypto test suite testing particularly CVE-2024-31497 is run

[ Risks ]
Low reviewed by maintainer

Approved by Colin

[ Checklist ]
  [X] *all* changes are documented in the d/changelog
  [X] I reviewed all changes and I approve them
  [X] attach debdiff against the package in (old)stable
  [X] the issue is verified as fixed in unstable

[ Changes ]
* Non-maintainer upload.
  * Cherry-pick from upstream:
    - Add an extra HMAC constructor function
    - Fix CVE-2024-31497: biased ECDSA nonce generation allows an attacker
      to recover a user's NIST P-521 secret key via a quick attack in
      approximately 60 signatures. In other words, an adversary
      may already have enough signature information to compromise a victim's
      private key, even if there is no further use of vulnerable PuTTY
      versions.
  * Run test/cryptsuite.py during build.
diff -Nru putty-0.78/debian/changelog putty-0.78/debian/changelog
--- putty-0.78/debian/changelog	2023-12-18 19:13:57.000000000 +0000
+++ putty-0.78/debian/changelog	2024-07-16 10:44:03.000000000 +0000
@@ -1,3 +1,18 @@
+putty (0.78-2+deb12u2) bookworm; urgency=medium
+
+  * Non-maintainer upload.
+  * Cherry-pick from upstream:
+    - Add an extra HMAC constructor function
+    - Fix CVE-2024-31497: biased ECDSA nonce generation allows an attacker
+      to recover a user's NIST P-521 secret key via a quick attack in
+      approximately 60 signatures. In other words, an adversary
+      may already have enough signature information to compromise a victim's
+      private key, even if there is no further use of vulnerable PuTTY
+      versions.
+  * Run test/cryptsuite.py during build.
+
+ -- Bastien Roucari??s <ro...@debian.org>  Tue, 16 Jul 2024 10:44:03 +0000
+
 putty (0.78-2+deb12u1) bookworm-security; urgency=medium
 
   * CVE-2023-48795: Cherry-pick from upstream:
diff -Nru putty-0.78/debian/control putty-0.78/debian/control
--- putty-0.78/debian/control	2023-12-18 19:13:47.000000000 +0000
+++ putty-0.78/debian/control	2024-07-16 10:44:03.000000000 +0000
@@ -8,6 +8,7 @@
                debhelper-compat (= 13),
                dh-exec,
                dpkg-dev (>= 1.15.7~),
+               python3 <!nocheck>,
 Build-Depends-Arch: imagemagick,
                     libgtk-3-dev,
                     libx11-dev,
diff -Nru putty-0.78/debian/.git-dpm putty-0.78/debian/.git-dpm
--- putty-0.78/debian/.git-dpm	2023-12-18 19:13:47.000000000 +0000
+++ putty-0.78/debian/.git-dpm	2024-07-16 10:44:03.000000000 +0000
@@ -1,6 +1,6 @@
 # see git-dpm(1) from git-dpm package
-cbe541c94bed68e3a009f622d7f36bd4ca00a005
-cbe541c94bed68e3a009f622d7f36bd4ca00a005
+fc80bc63dba4a891e7fca2ffda5390d000e1971d
+fc80bc63dba4a891e7fca2ffda5390d000e1971d
 e517b33826b38389d4d45a859603a635bd3cf55b
 e517b33826b38389d4d45a859603a635bd3cf55b
 putty_0.78.orig.tar.gz
diff -Nru putty-0.78/debian/.gitignore putty-0.78/debian/.gitignore
--- putty-0.78/debian/.gitignore	2023-12-18 19:13:47.000000000 +0000
+++ putty-0.78/debian/.gitignore	1970-01-01 00:00:00.000000000 +0000
@@ -1,9 +0,0 @@
-/*.debhelper*
-/*.substvars
-/build
-/files
-/pterm
-/putty
-/putty-doc
-/putty-tools
-/version.but.save
diff -Nru putty-0.78/debian/patches/0009-Add-an-extra-HMAC-constructor-function.patch putty-0.78/debian/patches/0009-Add-an-extra-HMAC-constructor-function.patch
--- putty-0.78/debian/patches/0009-Add-an-extra-HMAC-constructor-function.patch	1970-01-01 00:00:00.000000000 +0000
+++ putty-0.78/debian/patches/0009-Add-an-extra-HMAC-constructor-function.patch	2024-07-16 10:44:03.000000000 +0000
@@ -0,0 +1,108 @@
+From 5a6f12336d7ddfb0322898cba3cde010341e945c Mon Sep 17 00:00:00 2001
+From: Simon Tatham <ana...@pobox.com>
+Date: Mon, 1 Apr 2024 07:45:21 +0100
+Subject: Add an extra HMAC constructor function.
+
+Add an extra HMAC constructor function.
+
+This takes a plain ssh_hashalg, and constructs the most natural kind
+of HMAC wrapper around it, taking its key length and output length
+to be the hash's output length. In other words, it converts SHA-foo
+into exactly the thing usually called HMAC-SHA-foo.
+
+It does it by constructing a new ssh2_macalg vtable, and including it
+in the same memory allocation as the actual hash object. That's the
+first time in PuTTY I've done it this way.
+
+Nothing yet uses this, but a new piece of code is about to.
+
+origin: backport, https://git.tartarus.org/?p=simon/putty.git;a=commitdiff_plain;h=dea3ddca0537299ebfe907dd4c883fe65bfb4035
+---
+ crypto/hmac.c | 45 +++++++++++++++++++++++++++++++++++++++++++--
+ ssh.h         |  5 +++++
+ 2 files changed, 48 insertions(+), 2 deletions(-)
+
+diff --git a/crypto/hmac.c b/crypto/hmac.c
+index adeccd29..fa70c8e6 100644
+--- a/crypto/hmac.c
++++ b/crypto/hmac.c
+@@ -18,9 +18,10 @@ struct hmac_extra {
+     const char *suffix, *annotation;
+ };
+ 
+-static ssh2_mac *hmac_new(const ssh2_macalg *alg, ssh_cipher *cipher)
++/* Most of hmac_new(). Takes the actual 'struct hmac' as a parameter,
++ * because sometimes it will have been allocated in a special way. */
++static ssh2_mac *hmac_new_inner(struct hmac *ctx, const ssh2_macalg *alg)
+ {
+-    struct hmac *ctx = snew(struct hmac);
+     const struct hmac_extra *extra = (const struct hmac_extra *)alg->extra;
+ 
+     ctx->h_outer = ssh_hash_new(extra->hashalg_base);
+@@ -64,6 +65,11 @@ static ssh2_mac *hmac_new(const ssh2_macalg *alg, ssh_cipher *cipher)
+     return &ctx->mac;
+ }
+ 
++static ssh2_mac *hmac_new(const ssh2_macalg *alg, ssh_cipher *cipher)
++{
++    return hmac_new_inner(snew(struct hmac), alg); /* cipher isn't needed */
++}
++
+ static void hmac_free(ssh2_mac *mac)
+ {
+     struct hmac *ctx = container_of(mac, struct hmac, mac);
+@@ -261,3 +267,38 @@ const ssh2_macalg ssh_hmac_sha1_96_buggy = {
+     .keylen = 16,
+     .extra = &ssh_hmac_sha1_96_buggy_extra,
+ };
++
++ssh2_mac *hmac_new_from_hash(const ssh_hashalg *hash)
++{
++    /*
++     * Construct a custom ssh2_macalg, derived directly from the
++     * provided hash vtable. It's included in the same memory
++     * allocation as the struct hmac, so that it all gets freed
++     * together.
++     */
++
++    struct alloc {
++        struct hmac hmac;
++        ssh2_macalg alg;
++        struct hmac_extra extra;
++    };
++
++    struct alloc *alloc = snew(struct alloc);
++    alloc->alg.new = hmac_new;
++    alloc->alg.free = hmac_free;
++    alloc->alg.setkey = hmac_key;
++    alloc->alg.start = hmac_start;
++    alloc->alg.genresult = hmac_genresult;
++    alloc->alg.next_message = nullmac_next_message;
++    alloc->alg.text_name = hmac_text_name;
++    alloc->alg.name = NULL;
++    alloc->alg.etm_name = NULL;
++    alloc->alg.len = hash->hlen;
++    alloc->alg.keylen = hash->hlen;
++    alloc->alg.extra = &alloc->extra;
++    alloc->extra.hashalg_base = hash;
++    alloc->extra.suffix = "";
++    alloc->extra.annotation = NULL;
++
++    return hmac_new_inner(&alloc->hmac, &alloc->alg);
++}
+diff --git a/ssh.h b/ssh.h
+index 0961c0b2..b33be1c7 100644
+--- a/ssh.h
++++ b/ssh.h
+@@ -762,6 +762,11 @@ void nullmac_next_message(ssh2_mac *m);
+  * string with a given key in the most obvious way. */
+ void mac_simple(const ssh2_macalg *alg, ptrlen key, ptrlen data, void *output);
+ 
++/* Constructor that makes an HMAC object given just a MAC. This object
++ * will have empty 'name' and 'etm_name' fields, so it's not suitable
++ * for use in SSH. It's used as a subroutine in RFC 6979. */
++ssh2_mac *hmac_new_from_hash(const ssh_hashalg *hash);
++
+ struct ssh_hash {
+     const ssh_hashalg *vt;
+     BinarySink_DELEGATE_IMPLEMENTATION;
diff -Nru putty-0.78/debian/patches/0010-Switch-to-RFC-6979-for-DSA-nonce-generation.patch putty-0.78/debian/patches/0010-Switch-to-RFC-6979-for-DSA-nonce-generation.patch
--- putty-0.78/debian/patches/0010-Switch-to-RFC-6979-for-DSA-nonce-generation.patch	1970-01-01 00:00:00.000000000 +0000
+++ putty-0.78/debian/patches/0010-Switch-to-RFC-6979-for-DSA-nonce-generation.patch	2024-07-16 10:44:03.000000000 +0000
@@ -0,0 +1,1034 @@
+From fc80bc63dba4a891e7fca2ffda5390d000e1971d Mon Sep 17 00:00:00 2001
+From: Simon Tatham <ana...@pobox.com>
+Date: Mon, 1 Apr 2024 08:18:34 +0000
+Subject: Switch to RFC 6979 for DSA nonce generation.
+
+This fixes a vulnerability that compromises NIST P521 ECDSA keys when
+they are used with PuTTY's existing DSA nonce generation code. The
+vulnerability has been assigned the identifier CVE-2024-31497.
+
+PuTTY has been doing its DSA signing deterministically for literally
+as long as it's been doing it at all, because I didn't trust Windows's
+entropy generation. Deterministic nonce generation was introduced in
+commit d345ebc2a5a0b59, as part of the initial version of our DSA
+signing routine. At the time, there was no standard for how to do it,
+so we had to think up the details of our system ourselves, with some
+help from the Cambridge University computer security group.
+
+More than ten years later, RFC 6979 was published, recommending a
+similar system for general use, naturally with all the details
+different. We didn't switch over to doing it that way, because we had
+a scheme in place already, and as far as I could see, the differences
+were not security-critical - just the normal sort of variation you
+expect when any two people design a protocol component of this kind
+independently.
+
+As far as I know, the _structure_ of our scheme is still perfectly
+fine, in terms of what data gets hashed, how many times, and how the
+hash output is converted into a nonce. But the weak spot is the choice
+of hash function: inside our dsa_gen_k() function, we generate 512
+bits of random data using SHA-512, and then reduce that to the output
+range by modular reduction, regardless of what signature algorithm
+we're generating a nonce for.
+
+In the original use case, this introduced a theoretical bias (the
+output size is an odd prime, which doesn't evenly divide the space of
+2^512 possible inputs to the reduction), but the theory was that since
+integer DSA uses a modulus prime only 160 bits long (being based on
+SHA-1, at least in the form that SSH uses it), the bias would be too
+small to be detectable, let alone exploitable.
+
+Then we reused the same function for NIST-style ECDSA, when it
+arrived. This is fine for the P256 curve, and even P384. But in P521,
+the order of the base point is _greater_ than 2^512, so when we
+generate a 512-bit number and reduce it, the reduction never makes any
+difference, and our output nonces are all in the first 2^512 elements
+of the range of about 2^521. So this _does_ introduce a significant
+bias in the nonces, compared to the ideal of uniformly random
+distribution over the whole range. And it's been recently discovered
+that a bias of this kind is sufficient to expose private keys, given a
+manageably small number of signatures to work from.
+
+(Incidentally, none of this affects Ed25519. The spec for that system
+includes its own idea of how you should do deterministic nonce
+generation - completely different again, naturally - and we did it
+that way rather than our way, so that we could use the existing test
+vectors.)
+
+The simplest fix would be to patch our existing nonce generator to use
+a longer hash, or concatenate a couple of SHA-512 hashes, or something
+similar. But I think a more robust approach is to switch it out
+completely for what is now the standard system. The main reason why I
+prefer that is that the standard system comes with test vectors, which
+adds a lot of confidence that I haven't made some other mistake in
+following my own design.
+
+So here's a commit that adds an implementation of RFC 6979, and
+removes the old dsa_gen_k() function. Tests are added based on the
+RFC's appendix of test vectors (as many as are compatible with the
+more limited API of PuTTY's crypto code, e.g. we lack support for the
+NIST P192 curve, or for doing integer DSA with many different hash
+functions). One existing test changes its expected outputs, namely the
+one that has a sample key pair and signature for every key algorithm
+we support.
+
+origin: https://git.tartarus.org/?p=simon/putty.git;a=commitdiff_plain;h=c193fe9848f50a88a4089aac647fecc31ae96d27
+bug: https://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/vuln-p521-bias.html
+bug-debian-security: https://security-tracker.debian.org/tracker/CVE-2024-31497
+---
+ crypto/CMakeLists.txt |   1 +
+ crypto/dsa.c          | 116 +-------------
+ crypto/ecc-ssh.c      |  14 +-
+ crypto/rfc6979.c      | 359 ++++++++++++++++++++++++++++++++++++++++++
+ defs.h                |   2 +
+ ssh.h                 |  15 +-
+ test/cryptsuite.py    | 249 ++++++++++++++++++++++++++++-
+ test/testcrypt-func.h |   6 +
+ test/testsc.c         |  59 +++++++
+ 9 files changed, 690 insertions(+), 131 deletions(-)
+ create mode 100644 crypto/rfc6979.c
+
+diff --git a/crypto/CMakeLists.txt b/crypto/CMakeLists.txt
+index 4b0aa907..edb02ce4 100644
+--- a/crypto/CMakeLists.txt
++++ b/crypto/CMakeLists.txt
+@@ -30,6 +30,7 @@ add_sources_from_current_dir(crypto
+   pubkey-pem.c
+   pubkey-ppk.c
+   pubkey-ssh1.c
++  rfc6979.c
+   rsa.c
+   sha256-common.c
+   sha256-select.c
+diff --git a/crypto/dsa.c b/crypto/dsa.c
+index 71fcd94a..1999a1c2 100644
+--- a/crypto/dsa.c
++++ b/crypto/dsa.c
+@@ -340,117 +340,6 @@ static int dsa_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
+     return ret;
+ }
+ 
+-mp_int *dsa_gen_k(const char *id_string, mp_int *modulus,
+-                  mp_int *private_key,
+-                  unsigned char *digest, int digest_len)
+-{
+-    /*
+-     * The basic DSA signing algorithm is:
+-     *
+-     *  - invent a random k between 1 and q-1 (exclusive).
+-     *  - Compute r = (g^k mod p) mod q.
+-     *  - Compute s = k^-1 * (hash + x*r) mod q.
+-     *
+-     * This has the dangerous properties that:
+-     *
+-     *  - if an attacker in possession of the public key _and_ the
+-     *    signature (for example, the host you just authenticated
+-     *    to) can guess your k, he can reverse the computation of s
+-     *    and work out x = r^-1 * (s*k - hash) mod q. That is, he
+-     *    can deduce the private half of your key, and masquerade
+-     *    as you for as long as the key is still valid.
+-     *
+-     *  - since r is a function purely of k and the public key, if
+-     *    the attacker only has a _range of possibilities_ for k
+-     *    it's easy for him to work through them all and check each
+-     *    one against r; he'll never be unsure of whether he's got
+-     *    the right one.
+-     *
+-     *  - if you ever sign two different hashes with the same k, it
+-     *    will be immediately obvious because the two signatures
+-     *    will have the same r, and moreover an attacker in
+-     *    possession of both signatures (and the public key of
+-     *    course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
+-     *    and from there deduce x as before.
+-     *
+-     *  - the Bleichenbacher attack on DSA makes use of methods of
+-     *    generating k which are significantly non-uniformly
+-     *    distributed; in particular, generating a 160-bit random
+-     *    number and reducing it mod q is right out.
+-     *
+-     * For this reason we must be pretty careful about how we
+-     * generate our k. Since this code runs on Windows, with no
+-     * particularly good system entropy sources, we can't trust our
+-     * RNG itself to produce properly unpredictable data. Hence, we
+-     * use a totally different scheme instead.
+-     *
+-     * What we do is to take a SHA-512 (_big_) hash of the private
+-     * key x, and then feed this into another SHA-512 hash that
+-     * also includes the message hash being signed. That is:
+-     *
+-     *   proto_k = SHA512 ( SHA512(x) || SHA160(message) )
+-     *
+-     * This number is 512 bits long, so reducing it mod q won't be
+-     * noticeably non-uniform. So
+-     *
+-     *   k = proto_k mod q
+-     *
+-     * This has the interesting property that it's _deterministic_:
+-     * signing the same hash twice with the same key yields the
+-     * same signature.
+-     *
+-     * Despite this determinism, it's still not predictable to an
+-     * attacker, because in order to repeat the SHA-512
+-     * construction that created it, the attacker would have to
+-     * know the private key value x - and by assumption he doesn't,
+-     * because if he knew that he wouldn't be attacking k!
+-     *
+-     * (This trick doesn't, _per se_, protect against reuse of k.
+-     * Reuse of k is left to chance; all it does is prevent
+-     * _excessively high_ chances of reuse of k due to entropy
+-     * problems.)
+-     *
+-     * Thanks to Colin Plumb for the general idea of using x to
+-     * ensure k is hard to guess, and to the Cambridge University
+-     * Computer Security Group for helping to argue out all the
+-     * fine details.
+-     */
+-    ssh_hash *h;
+-    unsigned char digest512[64];
+-
+-    /*
+-     * Hash some identifying text plus x.
+-     */
+-    h = ssh_hash_new(&ssh_sha512);
+-    put_asciz(h, id_string);
+-    put_mp_ssh2(h, private_key);
+-    ssh_hash_digest(h, digest512);
+-
+-    /*
+-     * Now hash that digest plus the message hash.
+-     */
+-    ssh_hash_reset(h);
+-    put_data(h, digest512, sizeof(digest512));
+-    put_data(h, digest, digest_len);
+-    ssh_hash_final(h, digest512);
+-
+-    /*
+-     * Now convert the result into a bignum, and coerce it to the
+-     * range [2,q), which we do by reducing it mod q-2 and adding 2.
+-     */
+-    mp_int *modminus2 = mp_copy(modulus);
+-    mp_sub_integer_into(modminus2, modminus2, 2);
+-    mp_int *proto_k = mp_from_bytes_be(make_ptrlen(digest512, 64));
+-    mp_int *k = mp_mod(proto_k, modminus2);
+-    mp_free(proto_k);
+-    mp_free(modminus2);
+-    mp_add_integer_into(k, k, 2);
+-
+-    smemclr(digest512, sizeof(digest512));
+-
+-    return k;
+-}
+-
+ static void dsa_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs)
+ {
+     struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
+@@ -459,8 +348,9 @@ static void dsa_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs)
+ 
+     hash_simple(&ssh_sha1, data, digest);
+ 
+-    mp_int *k = dsa_gen_k("DSA deterministic k generator", dsa->q, dsa->x,
+-                          digest, sizeof(digest));
++    /* Generate any valid exponent k, using the RFC 6979 deterministic
++     * procedure. */
++    mp_int *k = rfc6979(&ssh_sha1, dsa->q, dsa->x, data);
+     mp_int *kinv = mp_invert(k, dsa->q);       /* k^-1 mod q */
+ 
+     /*
+diff --git a/crypto/ecc-ssh.c b/crypto/ecc-ssh.c
+index d3197866..5fa25189 100644
+--- a/crypto/ecc-ssh.c
++++ b/crypto/ecc-ssh.c
+@@ -1126,16 +1126,10 @@ static void ecdsa_sign(ssh_key *key, ptrlen data,
+ 
+     mp_int *z = ecdsa_signing_exponent_from_data(ek->curve, extra, data);
+ 
+-    /* Generate k between 1 and curve->n, using the same deterministic
+-     * k generation system we use for conventional DSA. */
+-    mp_int *k;
+-    {
+-        unsigned char digest[20];
+-        hash_simple(&ssh_sha1, data, digest);
+-        k = dsa_gen_k(
+-            "ECDSA deterministic k generator", ek->curve->w.G_order,
+-            ek->privateKey, digest, sizeof(digest));
+-    }
++    /* Generate any valid exponent k, using the RFC 6979 deterministic
++     * procedure. */
++    mp_int *k = rfc6979(
++        extra->hash, ek->curve->w.G_order, ek->privateKey, data);
+ 
+     WeierstrassPoint *kG = ecc_weierstrass_multiply(ek->curve->w.G, k);
+     mp_int *x;
+diff --git a/crypto/rfc6979.c b/crypto/rfc6979.c
+new file mode 100644
+index 00000000..73e5c924
+--- /dev/null
++++ b/crypto/rfc6979.c
+@@ -0,0 +1,359 @@
++/*
++ * Code to generate 'nonce' values for DSA signature algorithms, in a
++ * deterministic way.
++ */
++
++#include "ssh.h"
++#include "mpint.h"
++#include "misc.h"
++
++/*
++ * All DSA-type signature systems depend on a nonce - a random number
++ * generated during the signing operation.
++ *
++ * This nonce is a weak point of DSA and needs careful protection,
++ * for multiple reasons:
++ *
++ *  1. If an attacker in possession of your public key and a single
++ *     signature can find out or guess the nonce you used in that
++ *     signature, they can immediately recover your _private key_.
++ *
++ *  2. If you reuse the same nonce in two different signatures, this
++ *     will be instantly obvious to the attacker (one of the two
++ *     values making up the signature will match), and again, they can
++ *     immediately recover the private key as soon as they notice this.
++ *
++ *  3. In at least one system, information about your private key is
++ *     leaked merely by generating nonces with a significant bias.
++ *
++ * Attacks #1 and #2 work across all of integer DSA, NIST-style ECDSA,
++ * and EdDSA. The details vary, but the headline effects are the same.
++ *
++ * So we must be very careful with our nonces. They must be generated
++ * with uniform distribution, but also, they must avoid depending on
++ * any random number generator that has the slightest doubt about its
++ * reliability.
++ *
++ * In particular, PuTTY's policy is that for this purpose we don't
++ * _even_ trust the PRNG we use for other cryptography. This is mostly
++ * a concern because of Windows, where system entropy sources are
++ * limited and we have doubts about their trustworthiness
++ * - even CryptGenRandom. PuTTY compensates as best it can with its
++ * own ongoing entropy collection, and we trust that for session keys,
++ * but revealing the private key that goes with a long-term public key
++ * is a far worse outcome than revealing one SSH session key, and for
++ * keeping your private key safe, we don't think the available Windows
++ * entropy gives us enough confidence.
++ *
++ * A common strategy these days (although <hipster>PuTTY was doing it
++ * before it was cool</hipster>) is to avoid using a PRNG based on
++ * system entropy at all. Instead, you use a deterministic PRNG that
++ * starts from a fixed input seed, and in that input seed you include
++ * the message to be signed and the _private key_.
++ *
++ * Including the private key in the seed is counterintuitive, but does
++ * actually make sense. A deterministic nonce generation strategy must
++ * use _some_ piece of input that the attacker doesn't have, or else
++ * they'd be able to repeat the entire computation and construct the
++ * same nonce you did. And the one thing they don't know is the
++ * private key! So we include that in the seed data (under enough
++ * layers of overcautious hashing to protect it against exposure), and
++ * then they _can't_ repeat the same construction. Moreover, if they
++ * _could_, they'd already know the private key, so they wouldn't need
++ * to perform an attack of this kind at all!
++ *
++ * (This trick doesn't, _per se_, protect against reuse of nonces.
++ * That is left to chance, which is enough, because the space of
++ * nonces is large enough to make it adequately unlikely. But it
++ * avoids escalating the reuse risk due to inadequate entropy.)
++ *
++ * For integer DSA and ECDSA, the system we use for deterministic
++ * generation of k is exactly the one specified in RFC 6979. We
++ * switched to this from the old system that PuTTY used to use before
++ * that RFC came out. The old system had a critical bug: it did not
++ * always generate _enough_ data to get uniform distribution, because
++ * its output was a single SHA-512 hash. We could have fixed that
++ * minimally, by concatenating multiple hashes, but it seemed more
++ * sensible to switch to a system that comes with test vectors.
++ *
++ * One downside of RFC 6979 is that it's based on rejection sampling
++ * (that is, you generate a random number and keep retrying until it's
++ * in range). This makes it play badly with our side-channel test
++ * system, which wants every execution trace of a supposedly
++ * constant-time operation to be the same. To work around this
++ * awkwardness, we break up the algorithm further, into a setup phase
++ * and an 'attempt to generate an output' phase, each of which is
++ * individually constant-time.
++ */
++
++struct RFC6979 {
++    /*
++     * Size of the cyclic group over which we're doing DSA.
++     * Equivalently, the multiplicative order of g (for integer DSA)
++     * or the curve's base point (for ECDSA). For integer DSA this is
++     * also the same thing as the small prime q from the key
++     * parameters.
++     *
++     * This pointer is not owned. Freeing this structure will not free
++     * it, and freeing the pointed-to integer before freeing this
++     * structure will make this structure dangerous to use.
++     */
++    mp_int *q;
++
++    /*
++     * The private key integer, which is always the discrete log of
++     * the public key with respect to the group generator.
++     *
++     * This pointer is not owned. Freeing this structure will not free
++     * it, and freeing the pointed-to integer before freeing this
++     * structure will make this structure dangerous to use.
++     */
++    mp_int *x;
++
++    /*
++     * Cached values derived from q: its length in bits, and in bytes.
++     */
++    size_t qbits, qbytes;
++
++    /*
++     * Reusable hash and MAC objects.
++     */
++    ssh_hash *hash;
++    ssh2_mac *mac;
++
++    /*
++     * Cached value: the output length of the hash.
++     */
++    size_t hlen;
++
++    /*
++     * The byte string V used in the algorithm.
++     */
++    unsigned char V[MAX_HASH_LEN];
++
++    /*
++     * The string T to use during each attempt, and how many
++     * hash-sized blocks to fill it with.
++     */
++    size_t T_nblocks;
++    unsigned char *T;
++};
++
++static mp_int *bits2int(ptrlen b, RFC6979 *s)
++{
++    if (b.len > s->qbytes)
++        b.len = s->qbytes;
++    mp_int *x = mp_from_bytes_be(b);
++
++    /*
++     * Rationale for using mp_rshift_fixed_into and not
++     * mp_rshift_safe_into: the shift count is derived from the
++     * difference between the length of the modulus q, and the length
++     * of the input bit string, i.e. between the _sizes_ of things
++     * involved in the protocol. But the sizes aren't secret. Only the
++     * actual values of integers and bit strings of those sizes are
++     * secret. So it's OK for the shift count to be known to an
++     * attacker - they'd know it anyway just from which DSA algorithm
++     * we were using.
++     */
++    if (b.len * 8 > s->qbits)
++        mp_rshift_fixed_into(x, x, b.len * 8 - s->qbits);
++
++    return x;
++}
++
++static void BinarySink_put_int2octets(BinarySink *bs, mp_int *x, RFC6979 *s)
++{
++    mp_int *x_mod_q = mp_mod(x, s->q);
++    for (size_t i = s->qbytes; i-- > 0 ;)
++        put_byte(bs, mp_get_byte(x_mod_q, i));
++    mp_free(x_mod_q);
++}
++
++static void BinarySink_put_bits2octets(BinarySink *bs, ptrlen b, RFC6979 *s)
++{
++    mp_int *x = bits2int(b, s);
++    BinarySink_put_int2octets(bs, x, s);
++    mp_free(x);
++}
++
++#define put_int2octets(bs, x, s) \
++    BinarySink_put_int2octets(BinarySink_UPCAST(bs), x, s)
++#define put_bits2octets(bs, b, s) \
++    BinarySink_put_bits2octets(BinarySink_UPCAST(bs), b, s)
++
++RFC6979 *rfc6979_new(const ssh_hashalg *hashalg, mp_int *q, mp_int *x)
++{
++    /* Make the state structure. */
++    RFC6979 *s = snew(RFC6979);
++    s->q = q;
++    s->x = x;
++    s->qbits = mp_get_nbits(q);
++    s->qbytes = (s->qbits + 7) >> 3;
++    s->hash = ssh_hash_new(hashalg);
++    s->mac = hmac_new_from_hash(hashalg);
++    s->hlen = hashalg->hlen;
++
++    /* In each attempt, we concatenate enough hash blocks to be
++     * greater than qbits in size. */
++    size_t hbits = 8 * s->hlen;
++    s->T_nblocks = (s->qbits + hbits - 1) / hbits;
++    s->T = snewn(s->T_nblocks * s->hlen, unsigned char);
++
++    return s;
++}
++
++void rfc6979_setup(RFC6979 *s, ptrlen message)
++{
++    unsigned char h1[MAX_HASH_LEN];
++    unsigned char K[MAX_HASH_LEN];
++
++    /* 3.2 (a): hash the message to get h1. */
++    ssh_hash_reset(s->hash);
++    put_datapl(s->hash, message);
++    ssh_hash_digest(s->hash, h1);
++
++    /* 3.2 (b): set V to a sequence of 0x01 bytes the same size as the
++     * hash function's output. */
++    memset(s->V, 1, s->hlen);
++
++    /* 3.2 (c): set the initial HMAC key K to all zeroes, again the
++     * same size as the hash function's output. */
++    memset(K, 0, s->hlen);
++    ssh2_mac_setkey(s->mac, make_ptrlen(K, s->hlen));
++
++    /* 3.2 (d): compute the MAC of V, the private key, and h1, with
++     * key K, making a new key to replace K. */
++    ssh2_mac_start(s->mac);
++    put_data(s->mac, s->V, s->hlen);
++    put_byte(s->mac, 0);
++    put_int2octets(s->mac, s->x, s);
++    put_bits2octets(s->mac, make_ptrlen(h1, s->hlen), s);
++    ssh2_mac_genresult(s->mac, K);
++    ssh2_mac_setkey(s->mac, make_ptrlen(K, s->hlen));
++
++    /* 3.2 (e): replace V with its HMAC using the new K. */
++    ssh2_mac_start(s->mac);
++    put_data(s->mac, s->V, s->hlen);
++    ssh2_mac_genresult(s->mac, s->V);
++
++    /* 3.2 (f): repeat step (d), only using the new K in place of the
++     * initial all-zeroes one, and with the extra byte in the middle
++     * of the MAC preimage being 1 rather than 0. */
++    ssh2_mac_start(s->mac);
++    put_data(s->mac, s->V, s->hlen);
++    put_byte(s->mac, 1);
++    put_int2octets(s->mac, s->x, s);
++    put_bits2octets(s->mac, make_ptrlen(h1, s->hlen), s);
++    ssh2_mac_genresult(s->mac, K);
++    ssh2_mac_setkey(s->mac, make_ptrlen(K, s->hlen));
++
++    /* 3.2 (g): repeat step (e), using the again-replaced K. */
++    ssh2_mac_start(s->mac);
++    put_data(s->mac, s->V, s->hlen);
++    ssh2_mac_genresult(s->mac, s->V);
++
++    smemclr(h1, sizeof(h1));
++    smemclr(K, sizeof(K));
++}
++
++RFC6979Result rfc6979_attempt(RFC6979 *s)
++{
++    RFC6979Result result;
++
++    /* 3.2 (h) 1: set T to the empty string */
++    /* 3.2 (h) 2: make lots of output by concatenating MACs of V */
++    for (size_t i = 0; i < s->T_nblocks; i++) {
++        ssh2_mac_start(s->mac);
++        put_data(s->mac, s->V, s->hlen);
++        ssh2_mac_genresult(s->mac, s->V);
++        memcpy(s->T + i * s->hlen, s->V, s->hlen);
++    }
++
++    /* 3.2 (h) 3: if we have a number in [1, q-1], return it ... */
++    result.k = bits2int(make_ptrlen(s->T, s->T_nblocks * s->hlen), s);
++    result.ok = mp_hs_integer(result.k, 1) & ~mp_cmp_hs(result.k, s->q);
++
++    /*
++     * Perturb K and regenerate V ready for the next attempt.
++     *
++     * We do this unconditionally, whether or not the k we just
++     * generated is acceptable. The time cost isn't large compared to
++     * the public-key operation we're going to do next (not to mention
++     * the larger number of these same operations we've already done),
++     * and it makes side-channel testing easier if this function is
++     * constant-time from beginning to end.
++     *
++     * In other rejection-sampling situations, particularly prime
++     * generation, we're not this careful: it's enough to ensure that
++     * _successful_ attempts run in constant time, Failures can do
++     * whatever they like, on the theory that the only information
++     * they _have_ to potentially expose via side channels is
++     * information that was subsequently thrown away without being
++     * used for anything important. (Hence, for example, it's fine to
++     * have multiple different early-exit paths for failures you
++     * detect at different times.)
++     *
++     * But here, the situation is different. Prime generation attempts
++     * are independent of each other. These are not. All our
++     * iterations round this loop use the _same_ secret data set up by
++     * rfc6979_new(), and also, the perturbation step we're about to
++     * compute will be used by the next iteration if there is one. So
++     * it's absolutely _not_ true that a failed iteration deals
++     * exclusively with data that won't contribute to the eventual
++     * output. Hence, we have to be careful about the failures as well
++     * as the successes.
++     *
++     * (Even so, it would be OK to make successes and failures take
++     * different amounts of time, as long as each of those amounts was
++     * consistent. But it's easier for testing to make them the same.)
++     */
++    ssh2_mac_start(s->mac);
++    put_data(s->mac, s->V, s->hlen);
++    put_byte(s->mac, 0);
++    unsigned char K[MAX_HASH_LEN];
++    ssh2_mac_genresult(s->mac, K);
++    ssh2_mac_setkey(s->mac, make_ptrlen(K, s->hlen));
++    smemclr(K, sizeof(K));
++
++    ssh2_mac_start(s->mac);
++    put_data(s->mac, s->V, s->hlen);
++    ssh2_mac_genresult(s->mac, s->V);
++
++    return result;
++}
++
++void rfc6979_free(RFC6979 *s)
++{
++    /* We don't free s->q or s->x: our caller still owns those. */
++
++    ssh_hash_free(s->hash);
++    ssh2_mac_free(s->mac);
++    smemclr(s->T, s->T_nblocks * s->hlen);
++    sfree(s->T);
++
++    /* Clear the whole structure before freeing. Most fields aren't
++     * sensitive (pointers or well-known length values), but V is, and
++     * it's easier to clear the whole lot than fiddle about
++     * identifying the sensitive fields. */
++    smemclr(s, sizeof(*s));
++
++    sfree(s);
++}
++
++mp_int *rfc6979(
++    const ssh_hashalg *hashalg, mp_int *q, mp_int *x, ptrlen message)
++{
++    RFC6979 *s = rfc6979_new(hashalg, q, x);
++    rfc6979_setup(s, message);
++    RFC6979Result result;
++    while (true) {
++        result = rfc6979_attempt(s);
++        if (result.ok)
++            break;
++        else
++            mp_free(result.k);
++    }
++    rfc6979_free(s);
++    return result.k;
++}
+diff --git a/defs.h b/defs.h
+index 286e0c96..8b1f2712 100644
+--- a/defs.h
++++ b/defs.h
+@@ -177,6 +177,8 @@ typedef struct ecdh_key ecdh_key;
+ typedef struct ecdh_keyalg ecdh_keyalg;
+ typedef struct NTRUKeyPair NTRUKeyPair;
+ typedef struct NTRUEncodeSchedule NTRUEncodeSchedule;
++typedef struct RFC6979 RFC6979;
++typedef struct RFC6979Result RFC6979Result;
+ 
+ typedef struct dlgparam dlgparam;
+ typedef struct dlgcontrol dlgcontrol;
+diff --git a/ssh.h b/ssh.h
+index b33be1c7..dc8ca4b0 100644
+--- a/ssh.h
++++ b/ssh.h
+@@ -629,11 +629,18 @@ mp_int *ssh_rsakex_decrypt(
+     RSAKey *key, const ssh_hashalg *h, ptrlen ciphertext);
+ 
+ /*
+- * Helper function for k generation in DSA, reused in ECDSA
++ * System for generating k in DSA and ECDSA.
+  */
+-mp_int *dsa_gen_k(const char *id_string,
+-                  mp_int *modulus, mp_int *private_key,
+-                  unsigned char *digest, int digest_len);
++struct RFC6979Result {
++    mp_int *k;
++    unsigned ok;
++};
++RFC6979 *rfc6979_new(const ssh_hashalg *hashalg, mp_int *q, mp_int *x);
++void rfc6979_setup(RFC6979 *s, ptrlen message);
++RFC6979Result rfc6979_attempt(RFC6979 *s);
++void rfc6979_free(RFC6979 *s);
++mp_int *rfc6979(const ssh_hashalg *hashalg, mp_int *modulus,
++                mp_int *private_key, ptrlen message);
+ 
+ struct ssh_cipher {
+     const ssh_cipheralg *vt;
+diff --git a/test/cryptsuite.py b/test/cryptsuite.py
+index 69b492e8..83a2a8f5 100755
+--- a/test/cryptsuite.py
++++ b/test/cryptsuite.py
+@@ -90,6 +90,9 @@ def le_integer(x, nbits):
+     assert nbits % 8 == 0
+     return bytes([0xFF & (x >> (8*n)) for n in range(nbits//8)])
+ 
++def be_integer(x, nbits):
++    return bytes(reversed(le_integer(x, nbits)))
++
+ @contextlib.contextmanager
+ def queued_random_data(nbytes, seed):
+     hashsize = 512 // 8
+@@ -2075,6 +2078,244 @@ culpa qui officia deserunt mollit anim id est laborum.
+         self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, again"))
+         self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, again"))
+ 
++    def testRFC6979(self):
++        # The test case described in detail in RFC 6979 section A.1.
++        # We can't actually do the _signature_ for this, because it's
++        # based on ECDSA over a finite field of characteristic 2, and
++        # we only support prime-order fields. But we don't need to do
++        # full ECDSA, only generate the same deterministic nonce that
++        # the test case expects.
++        k = rfc6979('sha256',
++                    0x4000000000000000000020108A2E0CC0D99F8A5EF,
++                    0x09A4D6792295A7F730FC3F2B49CBC0F62E862272F, "sample")
++        self.assertEqual(int(k), 0x23AF4074C90A02B3FE61D286D5C87F425E6BDD81B)
++
++        # Selected test cases from the rest of Appendix A.
++        #
++        # We can only use test cases for which we have the appropriate
++        # hash function, so I've left out the test cases based on
++        # SHA-224. (We could easily implement that, but I don't think
++        # it's worth it just for adding further tests of this one
++        # function.) Similarly, I've omitted test cases relating to
++        # ECDSA curves we don't implement: P192, P224, and all the
++        # curves over power-of-2 finite fields.
++        #
++        # Where possible, we also test the actual signature algorithm,
++        # to make sure it delivers the same entire signature as the
++        # test case. This demonstrates that the rfc6979() function is
++        # being called in the right way and the results are being used
++        # as they should be. Here I've had to cut down the test cases
++        # even further, because the RFC specifies test cases with a
++        # cross product of DSA group and hash function, whereas we
++        # have a fixed hash (specified by SSH) for each signature
++        # algorithm. And the RFC is clear that you use the same hash
++        # for nonce generation and actual signing.
++
++        # A.2.1: 1024-bit DSA
++        q = 0x996F967F6C8E388D9E28D01E205FBA957A5698B1
++        x = 0x411602CB19A6CCC34494D79D98EF1E7ED5AF25F7
++        k = rfc6979('sha1', q, x, "sample")
++        self.assertEqual(int(k), 0x7BDB6B0FF756E1BB5D53583EF979082F9AD5BD5B)
++        k = rfc6979('sha256', q, x, "sample")
++        self.assertEqual(int(k), 0x519BA0546D0C39202A7D34D7DFA5E760B318BCFB)
++        k = rfc6979('sha384', q, x, "sample")
++        self.assertEqual(int(k), 0x95897CD7BBB944AA932DBC579C1C09EB6FCFC595)
++        k = rfc6979('sha512', q, x, "sample")
++        self.assertEqual(int(k), 0x09ECE7CA27D0F5A4DD4E556C9DF1D21D28104F8B)
++        k = rfc6979('sha1', q, x, "test")
++        self.assertEqual(int(k), 0x5C842DF4F9E344EE09F056838B42C7A17F4A6433)
++        k = rfc6979('sha256', q, x, "test")
++        self.assertEqual(int(k), 0x5A67592E8128E03A417B0484410FB72C0B630E1A)
++        k = rfc6979('sha384', q, x, "test")
++        self.assertEqual(int(k), 0x220156B761F6CA5E6C9F1B9CF9C24BE25F98CD89)
++        k = rfc6979('sha512', q, x, "test")
++        self.assertEqual(int(k), 0x65D2C2EEB175E370F28C75BFCDC028D22C7DBE9C)
++        # The rest of the public key, for signature testing
++        p = 0x86F5CA03DCFEB225063FF830A0C769B9DD9D6153AD91D7CE27F787C43278B447E6533B86B18BED6E8A48B784A14C252C5BE0DBF60B86D6385BD2F12FB763ED8873ABFD3F5BA2E0A8C0A59082EAC056935E529DAF7C610467899C77ADEDFC846C881870B7B19B2B58F9BE0521A17002E3BDD6B86685EE90B3D9A1B02B782B1779
++        g = 0x07B0F92546150B62514BB771E2A0C0CE387F03BDA6C56B505209FF25FD3C133D89BBCD97E904E09114D9A7DEFDEADFC9078EA544D2E401AEECC40BB9FBBF78FD87995A10A1C27CB7789B594BA7EFB5C4326A9FE59A070E136DB77175464ADCA417BE5DCE2F40D10A46A3A3943F26AB7FD9C0398FF8C76EE0A56826A8A88F1DBD
++        y = 0x5DF5E01DED31D0297E274E1691C192FE5868FEF9E19A84776454B100CF16F65392195A38B90523E2542EE61871C0440CB87C322FC4B4D2EC5E1E7EC766E1BE8D4CE935437DC11C3C8FD426338933EBFE739CB3465F4D3668C5E473508253B1E682F65CBDC4FAE93C2EA212390E54905A86E2223170B44EAA7DA5DD9FFCFB7F3B
++        pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
++        privblob = ssh2_mpint(x)
++        pubkey = ssh_key_new_pub('dsa', pubblob)
++        privkey = ssh_key_new_priv('dsa', pubblob, privblob)
++        sig = ssh_key_sign(privkey, b"sample", 0)
++        # Expected output using SHA-1 as the hash in nonce
++        # construction.
++        r = 0x2E1A0C2562B2912CAAF89186FB0F42001585DA55
++        s = 0x29EFB6B0AFF2D7A68EB70CA313022253B9A88DF5
++        ref_sig = ssh_string(b"ssh-dss") + ssh_string(
++            be_integer(r, 160) + be_integer(s, 160))
++        self.assertEqual(sig, ref_sig)
++        # And the other test string.
++        sig = ssh_key_sign(privkey, b"test", 0)
++        r = 0x42AB2052FD43E123F0607F115052A67DCD9C5C77
++        s = 0x183916B0230D45B9931491D4C6B0BD2FB4AAF088
++        ref_sig = ssh_string(b"ssh-dss") + ssh_string(
++            be_integer(r, 160) + be_integer(s, 160))
++        self.assertEqual(sig, ref_sig)
++
++        # A.2.2: 2048-bit DSA
++        q = 0xF2C3119374CE76C9356990B465374A17F23F9ED35089BD969F61C6DDE9998C1F
++        x = 0x69C7548C21D0DFEA6B9A51C9EAD4E27C33D3B3F180316E5BCAB92C933F0E4DBC
++        k = rfc6979('sha1', q, x, "sample")
++        self.assertEqual(int(k), 0x888FA6F7738A41BDC9846466ABDB8174C0338250AE50CE955CA16230F9CBD53E)
++        k = rfc6979('sha256', q, x, "sample")
++        self.assertEqual(int(k), 0x8926A27C40484216F052F4427CFD5647338B7B3939BC6573AF4333569D597C52)
++        k = rfc6979('sha384', q, x, "sample")
++        self.assertEqual(int(k), 0xC345D5AB3DA0A5BCB7EC8F8FB7A7E96069E03B206371EF7D83E39068EC564920)
++        k = rfc6979('sha512', q, x, "sample")
++        self.assertEqual(int(k), 0x5A12994431785485B3F5F067221517791B85A597B7A9436995C89ED0374668FC)
++        k = rfc6979('sha1', q, x, "test")
++        self.assertEqual(int(k), 0x6EEA486F9D41A037B2C640BC5645694FF8FF4B98D066A25F76BE641CCB24BA4F)
++        k = rfc6979('sha256', q, x, "test")
++        self.assertEqual(int(k), 0x1D6CE6DDA1C5D37307839CD03AB0A5CBB18E60D800937D67DFB4479AAC8DEAD7)
++        k = rfc6979('sha384', q, x, "test")
++        self.assertEqual(int(k), 0x206E61F73DBE1B2DC8BE736B22B079E9DACD974DB00EEBBC5B64CAD39CF9F91C)
++        k = rfc6979('sha512', q, x, "test")
++        self.assertEqual(int(k), 0xAFF1651E4CD6036D57AA8B2A05CCF1A9D5A40166340ECBBDC55BE10B568AA0AA)
++        # The rest of the public key, for signature testing
++        p = 0x9DB6FB5951B66BB6FE1E140F1D2CE5502374161FD6538DF1648218642F0B5C48C8F7A41AADFA187324B87674FA1822B00F1ECF8136943D7C55757264E5A1A44FFE012E9936E00C1D3E9310B01C7D179805D3058B2A9F4BB6F9716BFE6117C6B5B3CC4D9BE341104AD4A80AD6C94E005F4B993E14F091EB51743BF33050C38DE235567E1B34C3D6A5C0CEAA1A0F368213C3D19843D0B4B09DCB9FC72D39C8DE41F1BF14D4BB4563CA28371621CAD3324B6A2D392145BEBFAC748805236F5CA2FE92B871CD8F9C36D3292B5509CA8CAA77A2ADFC7BFD77DDA6F71125A7456FEA153E433256A2261C6A06ED3693797E7995FAD5AABBCFBE3EDA2741E375404AE25B
++        g = 0x5C7FF6B06F8F143FE8288433493E4769C4D988ACE5BE25A0E24809670716C613D7B0CEE6932F8FAA7C44D2CB24523DA53FBE4F6EC3595892D1AA58C4328A06C46A15662E7EAA703A1DECF8BBB2D05DBE2EB956C142A338661D10461C0D135472085057F3494309FFA73C611F78B32ADBB5740C361C9F35BE90997DB2014E2EF5AA61782F52ABEB8BD6432C4DD097BC5423B285DAFB60DC364E8161F4A2A35ACA3A10B1C4D203CC76A470A33AFDCBDD92959859ABD8B56E1725252D78EAC66E71BA9AE3F1DD2487199874393CD4D832186800654760E1E34C09E4D155179F9EC0DC4473F996BDCE6EED1CABED8B6F116F7AD9CF505DF0F998E34AB27514B0FFE7
++        y = 0x667098C654426C78D7F8201EAC6C203EF030D43605032C2F1FA937E5237DBD949F34A0A2564FE126DC8B715C5141802CE0979C8246463C40E6B6BDAA2513FA611728716C2E4FD53BC95B89E69949D96512E873B9C8F8DFD499CC312882561ADECB31F658E934C0C197F2C4D96B05CBAD67381E7B768891E4DA3843D24D94CDFB5126E9B8BF21E8358EE0E0A30EF13FD6A664C0DCE3731F7FB49A4845A4FD8254687972A2D382599C9BAC4E0ED7998193078913032558134976410B89D2C171D123AC35FD977219597AA7D15C1A9A428E59194F75C721EBCBCFAE44696A499AFA74E04299F132026601638CB87AB79190D4A0986315DA8EEC6561C938996BEADF
++        pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
++        privblob = ssh2_mpint(x)
++        pubkey = ssh_key_new_pub('dsa', pubblob)
++        privkey = ssh_key_new_priv('dsa', pubblob, privblob)
++        sig = ssh_key_sign(privkey, b"sample", 0)
++        # Expected output using SHA-1 as the hash in nonce
++        # construction, which is how SSH does things. RFC6979 lists
++        # the following 256-bit values for r and s, but we end up only
++        # using the low 160 bits of each.
++        r = 0x3A1B2DBD7489D6ED7E608FD036C83AF396E290DBD602408E8677DAABD6E7445A
++        s = 0xD26FCBA19FA3E3058FFC02CA1596CDBB6E0D20CB37B06054F7E36DED0CDBBCCF
++        ref_sig = ssh_string(b"ssh-dss") + ssh_string(
++            be_integer(r, 160) + be_integer(s, 160))
++        self.assertEqual(sig, ref_sig)
++        # And the other test string.
++        sig = ssh_key_sign(privkey, b"test", 0)
++        r = 0xC18270A93CFC6063F57A4DFA86024F700D980E4CF4E2CB65A504397273D98EA0
++        s = 0x414F22E5F31A8B6D33295C7539C1C1BA3A6160D7D68D50AC0D3A5BEAC2884FAA
++        ref_sig = ssh_string(b"ssh-dss") + ssh_string(
++            be_integer(r, 160) + be_integer(s, 160))
++        self.assertEqual(sig, ref_sig)
++
++        # A.2.5: ECDSA with NIST P256
++        q = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551
++        x = 0xC9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721
++        k = rfc6979('sha1', q, x, "sample")
++        self.assertEqual(int(k), 0x882905F1227FD620FBF2ABF21244F0BA83D0DC3A9103DBBEE43A1FB858109DB4)
++        k = rfc6979('sha256', q, x, "sample")
++        self.assertEqual(int(k), 0xA6E3C57DD01ABE90086538398355DD4C3B17AA873382B0F24D6129493D8AAD60)
++        k = rfc6979('sha384', q, x, "sample")
++        self.assertEqual(int(k), 0x09F634B188CEFD98E7EC88B1AA9852D734D0BC272F7D2A47DECC6EBEB375AAD4)
++        k = rfc6979('sha512', q, x, "sample")
++        self.assertEqual(int(k), 0x5FA81C63109BADB88C1F367B47DA606DA28CAD69AA22C4FE6AD7DF73A7173AA5)
++        k = rfc6979('sha1', q, x, "test")
++        self.assertEqual(int(k), 0x8C9520267C55D6B980DF741E56B4ADEE114D84FBFA2E62137954164028632A2E)
++        k = rfc6979('sha256', q, x, "test")
++        self.assertEqual(int(k), 0xD16B6AE827F17175E040871A1C7EC3500192C4C92677336EC2537ACAEE0008E0)
++        k = rfc6979('sha384', q, x, "test")
++        self.assertEqual(int(k), 0x16AEFFA357260B04B1DD199693960740066C1A8F3E8EDD79070AA914D361B3B8)
++        k = rfc6979('sha512', q, x, "test")
++        self.assertEqual(int(k), 0x6915D11632ACA3C40D5D51C08DAF9C555933819548784480E93499000D9F0B7F)
++        # The public key, for signature testing
++        Ux = 0x60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6
++        Uy = 0x7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299
++        pubblob = ssh_string(b"ecdsa-sha2-nistp256") + ssh_string(b"nistp256") + ssh_string(b'\x04' + be_integer(Ux, 256) + be_integer(Uy, 256))
++        privblob = ssh2_mpint(x)
++        pubkey = ssh_key_new_pub('p256', pubblob)
++        privkey = ssh_key_new_priv('p256', pubblob, privblob)
++        sig = ssh_key_sign(privkey, b"sample", 0)
++        # Expected output using SHA-256
++        r = 0xEFD48B2AACB6A8FD1140DD9CD45E81D69D2C877B56AAF991C34D0EA84EAF3716
++        s = 0xF7CB1C942D657C41D436C7A1B6E29F65F3E900DBB9AFF4064DC4AB2F843ACDA8
++        ref_sig = ssh_string(b"ecdsa-sha2-nistp256") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
++        self.assertEqual(sig, ref_sig)
++        # And the other test string
++        sig = ssh_key_sign(privkey, b"test", 0)
++        r = 0xF1ABB023518351CD71D881567B1EA663ED3EFCF6C5132B354F28D3B0B7D38367
++        s = 0x019F4113742A2B14BD25926B49C649155F267E60D3814B4C0CC84250E46F0083
++        ref_sig = ssh_string(b"ecdsa-sha2-nistp256") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
++        self.assertEqual(sig, ref_sig)
++
++        # A.2.5: ECDSA with NIST P384
++        q = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973
++        x = 0x6B9D3DAD2E1B8C1C05B19875B6659F4DE23C3B667BF297BA9AA47740787137D896D5724E4C70A825F872C9EA60D2EDF5
++        k = rfc6979('sha1', q, x, "sample")
++        self.assertEqual(int(k), 0x4471EF7518BB2C7C20F62EAE1C387AD0C5E8E470995DB4ACF694466E6AB096630F29E5938D25106C3C340045A2DB01A7)
++        k = rfc6979('sha256', q, x, "sample")
++        self.assertEqual(int(k), 0x180AE9F9AEC5438A44BC159A1FCB277C7BE54FA20E7CF404B490650A8ACC414E375572342863C899F9F2EDF9747A9B60)
++        k = rfc6979('sha384', q, x, "sample")
++        self.assertEqual(int(k), 0x94ED910D1A099DAD3254E9242AE85ABDE4BA15168EAF0CA87A555FD56D10FBCA2907E3E83BA95368623B8C4686915CF9)
++        k = rfc6979('sha512', q, x, "sample")
++        self.assertEqual(int(k), 0x92FC3C7183A883E24216D1141F1A8976C5B0DD797DFA597E3D7B32198BD35331A4E966532593A52980D0E3AAA5E10EC3)
++        k = rfc6979('sha1', q, x, "test")
++        self.assertEqual(int(k), 0x66CC2C8F4D303FC962E5FF6A27BD79F84EC812DDAE58CF5243B64A4AD8094D47EC3727F3A3C186C15054492E30698497)
++        k = rfc6979('sha256', q, x, "test")
++        self.assertEqual(int(k), 0x0CFAC37587532347DC3389FDC98286BBA8C73807285B184C83E62E26C401C0FAA48DD070BA79921A3457ABFF2D630AD7)
++        k = rfc6979('sha384', q, x, "test")
++        self.assertEqual(int(k), 0x015EE46A5BF88773ED9123A5AB0807962D193719503C527B031B4C2D225092ADA71F4A459BC0DA98ADB95837DB8312EA)
++        k = rfc6979('sha512', q, x, "test")
++        self.assertEqual(int(k), 0x3780C4F67CB15518B6ACAE34C9F83568D2E12E47DEAB6C50A4E4EE5319D1E8CE0E2CC8A136036DC4B9C00E6888F66B6C)
++        # The public key, for signature testing
++        Ux = 0xEC3A4E415B4E19A4568618029F427FA5DA9A8BC4AE92E02E06AAE5286B300C64DEF8F0EA9055866064A254515480BC13
++        Uy = 0x8015D9B72D7D57244EA8EF9AC0C621896708A59367F9DFB9F54CA84B3F1C9DB1288B231C3AE0D4FE7344FD2533264720
++        pubblob = ssh_string(b"ecdsa-sha2-nistp384") + ssh_string(b"nistp384") + ssh_string(b'\x04' + be_integer(Ux, 384) + be_integer(Uy, 384))
++        privblob = ssh2_mpint(x)
++        pubkey = ssh_key_new_pub('p384', pubblob)
++        privkey = ssh_key_new_priv('p384', pubblob, privblob)
++        sig = ssh_key_sign(privkey, b"sample", 0)
++        # Expected output using SHA-384
++        r = 0x94EDBB92A5ECB8AAD4736E56C691916B3F88140666CE9FA73D64C4EA95AD133C81A648152E44ACF96E36DD1E80FABE46
++        s = 0x99EF4AEB15F178CEA1FE40DB2603138F130E740A19624526203B6351D0A3A94FA329C145786E679E7B82C71A38628AC8
++        ref_sig = ssh_string(b"ecdsa-sha2-nistp384") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
++        self.assertEqual(sig, ref_sig)
++        # And the other test string
++        sig = ssh_key_sign(privkey, b"test", 0)
++        r = 0x8203B63D3C853E8D77227FB377BCF7B7B772E97892A80F36AB775D509D7A5FEB0542A7F0812998DA8F1DD3CA3CF023DB
++        s = 0xDDD0760448D42D8A43AF45AF836FCE4DE8BE06B485E9B61B827C2F13173923E06A739F040649A667BF3B828246BAA5A5
++        ref_sig = ssh_string(b"ecdsa-sha2-nistp384") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
++        self.assertEqual(sig, ref_sig)
++
++        # A.2.6: ECDSA with NIST P521
++        q = 0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409
++        x = 0x0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538
++        k = rfc6979('sha1', q, x, "sample")
++        self.assertEqual(int(k), 0x089C071B419E1C2820962321787258469511958E80582E95D8378E0C2CCDB3CB42BEDE42F50E3FA3C71F5A76724281D31D9C89F0F91FC1BE4918DB1C03A5838D0F9)
++        k = rfc6979('sha256', q, x, "sample")
++        self.assertEqual(int(k), 0x0EDF38AFCAAECAB4383358B34D67C9F2216C8382AAEA44A3DAD5FDC9C32575761793FEF24EB0FC276DFC4F6E3EC476752F043CF01415387470BCBD8678ED2C7E1A0)
++        k = rfc6979('sha384', q, x, "sample")
++        self.assertEqual(int(k), 0x1546A108BC23A15D6F21872F7DED661FA8431DDBD922D0DCDB77CC878C8553FFAD064C95A920A750AC9137E527390D2D92F153E66196966EA554D9ADFCB109C4211)
++        k = rfc6979('sha512', q, x, "sample")
++        self.assertEqual(int(k), 0x1DAE2EA071F8110DC26882D4D5EAE0621A3256FC8847FB9022E2B7D28E6F10198B1574FDD03A9053C08A1854A168AA5A57470EC97DD5CE090124EF52A2F7ECBFFD3)
++        k = rfc6979('sha1', q, x, "test")
++        self.assertEqual(int(k), 0x0BB9F2BF4FE1038CCF4DABD7139A56F6FD8BB1386561BD3C6A4FC818B20DF5DDBA80795A947107A1AB9D12DAA615B1ADE4F7A9DC05E8E6311150F47F5C57CE8B222)
++        k = rfc6979('sha256', q, x, "test")
++        self.assertEqual(int(k), 0x01DE74955EFAABC4C4F17F8E84D881D1310B5392D7700275F82F145C61E843841AF09035BF7A6210F5A431A6A9E81C9323354A9E69135D44EBD2FCAA7731B909258)
++        k = rfc6979('sha384', q, x, "test")
++        self.assertEqual(int(k), 0x1F1FC4A349A7DA9A9E116BFDD055DC08E78252FF8E23AC276AC88B1770AE0B5DCEB1ED14A4916B769A523CE1E90BA22846AF11DF8B300C38818F713DADD85DE0C88)
++        k = rfc6979('sha512', q, x, "test")
++        self.assertEqual(int(k), 0x16200813020EC986863BEDFC1B121F605C1215645018AEA1A7B215A564DE9EB1B38A67AA1128B80CE391C4FB71187654AAA3431027BFC7F395766CA988C964DC56D)
++        # The public key, for signature testing
++        Ux = 0x1894550D0785932E00EAA23B694F213F8C3121F86DC97A04E5A7167DB4E5BCD371123D46E45DB6B5D5370A7F20FB633155D38FFA16D2BD761DCAC474B9A2F5023A4
++        Uy = 0x0493101C962CD4D2FDDF782285E64584139C2F91B47F87FF82354D6630F746A28A0DB25741B5B34A828008B22ACC23F924FAAFBD4D33F81EA66956DFEAA2BFDFCF5
++        pubblob = ssh_string(b"ecdsa-sha2-nistp521") + ssh_string(b"nistp521") + ssh_string(b'\x04' + be_integer(Ux, 528) + be_integer(Uy, 528))
++        privblob = ssh2_mpint(x)
++        pubkey = ssh_key_new_pub('p521', pubblob)
++        privkey = ssh_key_new_priv('p521', pubblob, privblob)
++        sig = ssh_key_sign(privkey, b"sample", 0)
++        # Expected output using SHA-512
++        r = 0x0C328FAFCBD79DD77850370C46325D987CB525569FB63C5D3BC53950E6D4C5F174E25A1EE9017B5D450606ADD152B534931D7D4E8455CC91F9B15BF05EC36E377FA
++        s = 0x0617CCE7CF5064806C467F678D3B4080D6F1CC50AF26CA209417308281B68AF282623EAA63E5B5C0723D8B8C37FF0777B1A20F8CCB1DCCC43997F1EE0E44DA4A67A
++        ref_sig = ssh_string(b"ecdsa-sha2-nistp521") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
++        self.assertEqual(sig, ref_sig)
++        # And the other test string
++        sig = ssh_key_sign(privkey, b"test", 0)
++        r = 0x13E99020ABF5CEE7525D16B69B229652AB6BDF2AFFCAEF38773B4B7D08725F10CDB93482FDCC54EDCEE91ECA4166B2A7C6265EF0CE2BD7051B7CEF945BABD47EE6D
++        s = 0x1FBD0013C674AA79CB39849527916CE301C66EA7CE8B80682786AD60F98F7E78A19CA69EFF5C57400E3B3A0AD66CE0978214D13BAF4E9AC60752F7B155E2DE4DCE3
++        ref_sig = ssh_string(b"ecdsa-sha2-nistp521") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
++        self.assertEqual(sig, ref_sig)
++
+     def testBLAKE2b(self):
+         # The standard test vectors for BLAKE2b (in the separate class
+         # below) don't satisfy me because they only test one hash
+@@ -2381,10 +2622,10 @@ culpa qui officia deserunt mollit anim id est laborum.
+         test_keys = [
+             ('ed25519', 'AAAAC3NzaC1lZDI1NTE5AAAAIM7jupzef6CD0ps2JYxJp9IlwY49oorOseV5z5JFDFKn', 'AAAAIAf4/WRtypofgdNF2vbZOUFE1h4hvjw4tkGJZyOzI7c3', 255, b'0xf4d6e7f6f4479c23f0764ef43cea1711dbfe02aa2b5a32ff925c7c1fbf0f0db,0x27520c4592cf79e5b1ce8aa23d8ec125d2a7498c25369bd283a07fde9cbae3ce', [(0, 'AAAAC3NzaC1lZDI1NTE5AAAAQN73EqfyA4WneqDhgZ98TlRj9V5Wg8zCrMxTLJN1UtyfAnPUJDtfG/U0vOsP8PrnQxd41DDDnxrAXuqJz8rOagc=')]),
+             ('ed448', 'AAAACXNzaC1lZDQ0OAAAADnRI0CQDym5IqUidLNDcSdHe54bYEwqjpjBlab8uKGoe6FRqqejha7+5U/VAHy7BmE23+ju26O9XgA=', 'AAAAObP9klqyiJSJsdFJf+xwZQdkbZGUqXE07K6e5plfRTGjYYkyWJFUNFH4jzIn9xH1TX9z9EGycPaXAA==', 448, b'0x4bf4a2b6586c60d8cdb52c2b45b897f6d2224bc37987489c0d70febb449e8c82964ed5785827be808e44d31dd31e6ff7c99f43e49f419928,0x5ebda3dbeee8df366106bb7c00d54fe5feae85a3a7aa51a17ba8a1b8fca695c1988e2a4c601b9e7b47277143b37422a522b9290f904023d1', [(0, 'AAAACXNzaC1lZDQ0OAAAAHLkSVioGMvLesZp3Tn+Z/sSK0Hl7RHsHP4q9flLzTpZG5h6JDH3VmZBEjTJ6iOLaa0v4FoNt0ng4wAB53WrlQC4h3iAusoGXnPMAKJLmqzplKOCi8HKXk8Xl8fsXbaoyhatv1OZpwJcffmh1x+x+LSgNQA=')]),
+-            ('p256', 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHkYQ0sQoq5LbJI1VMWhw3bV43TSYi3WVpqIgKcBKK91TcFFlAMZgceOHQ0xAFYcSczIttLvFu+xkcLXrRd4N7Q=', 'AAAAIQCV/1VqiCsHZm/n+bq7lHEHlyy7KFgZBEbzqYaWtbx48Q==', 256, b'nistp256,0x7918434b10a2ae4b6c923554c5a1c376d5e374d2622dd6569a8880a70128af75,0x4dc14594031981c78e1d0d3100561c49ccc8b6d2ef16efb191c2d7ad177837b4', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAABIAAAAIAryzHDGi/TcCnbdxZkIYR5EGR6SNYXr/HlQRF8le+/IAAAAIERfzn6eHuBbqWIop2qL8S7DWRB3lenN1iyL10xYQPKw')]),
+-            ('p384', 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBMYK8PUtfAlJwKaBTIGEuCzH0vqOMa4UbcjrBbTbkGVSUnfo+nuC80NCdj9JJMs1jvfF8GzKLc5z8H3nZyM741/BUFjV7rEHsQFDek4KyWvKkEgKiTlZid19VukNo1q2Hg==', 'AAAAMGsfTmdB4zHdbiQ2euTSdzM6UKEOnrVjMAWwHEYvmG5qUOcBnn62fJDRJy67L+QGdg==', 384, b'nistp384,0xc60af0f52d7c0949c0a6814c8184b82cc7d2fa8e31ae146dc8eb05b4db9065525277e8fa7b82f34342763f4924cb358e,0xf7c5f06cca2dce73f07de767233be35fc15058d5eeb107b101437a4e0ac96bca90480a89395989dd7d56e90da35ab61e', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAABpAAAAMDmHrtXCADzLvkkWG/duBAHlf6B1mVvdt6F0uzXfsf8Yub8WXNUNVnYq6ovrWPzLggAAADEA9izzwoUuFcXYRJeKcRLZEGMmSDDPzUZb7oZR0UgD1jsMQXs8UfpO31Qur/FDSCRK')]),
+-            ('p521', 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFrGthlKM152vu2Ghk+R7iO9/M6e+hTehNZ6+FBwof4HPkPB2/HHXj5+w5ynWyUrWiX5TI2riuJEIrJErcRH5LglADnJDX2w4yrKZ+wDHSz9lwh9p2F+B5R952es6gX3RJRkGA+qhKpKup8gKx78RMbleX8wgRtIu+4YMUnKb1edREiRg==', 'AAAAQgFh7VNJFUljWhhyAEiL0z+UPs/QggcMTd3Vv2aKDeBdCRl5di8r+BMm39L7bRzxRMEtW5NSKlDtE8MFEGdIE9khsw==', 521, b'nistp521,0x16b1ad86528cd79dafbb61a193e47b88ef7f33a7be8537a1359ebe141c287f81cf90f076fc71d78f9fb0e729d6c94ad6897e53236ae2b89108ac912b7111f92e094,0xe72435f6c38cab299fb00c74b3f65c21f69d85f81e51f79d9eb3a817dd125190603eaa12a92aea7c80ac7bf1131b95e5fcc2046d22efb860c52729bd5e75112246', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAACMAAAAQgCLgvftvwM3CUaigrW0yzmCHoYjC6GLtO+6S91itqpgMEtWPNlaTZH6QQqkgscijWdXx98dDkQao/gcAKVmOZKPXgAAAEIB1PIrsDF1y6poJ/czqujB7NSUWt31v+c2t6UA8m2gTA1ARuVJ9XBGLMdceOTB00Hi9psC2RYFLpaWREOGCeDa6ow=')]),
+-            ('dsa', 'AAAAB3NzaC1kc3MAAABhAJyWZzjVddGdyc5JPu/WPrC07vKRAmlqO6TUi49ah96iRcM7/D1aRMVAdYBepQ2mf1fsQTmvoC9KgQa79nN3kHhz0voQBKOuKI1ZAodfVOgpP4xmcXgjaA73Vjz22n4newAAABUA6l7/vIveaiA33YYv+SKcKLQaA8cAAABgbErc8QLw/WDz7mhVRZrU+9x3Tfs68j3eW+B/d7Rz1ZCqMYDk7r/F8dlBdQlYhpQvhuSBgzoFa0+qPvSSxPmutgb94wNqhHlVIUb9ZOJNloNr2lXiPP//Wu51TxXAEvAAAAAAYQCcQ9mufXtZa5RyfwT4NuLivdsidP4HRoLXdlnppfFAbNdbhxE0Us8WZt+a/443bwKnYxgif8dgxv5UROnWTngWu0jbJHpaDcTc9lRyTeSUiZZK312s/Sl7qDk3/Du7RUI=', 'AAAAFGx3ft7G8AQzFsjhle7PWardUXh3', 768, b'0x9c966738d575d19dc9ce493eefd63eb0b4eef29102696a3ba4d48b8f5a87dea245c33bfc3d5a44c54075805ea50da67f57ec4139afa02f4a8106bbf67377907873d2fa1004a3ae288d5902875f54e8293f8c66717823680ef7563cf6da7e277b,0xea5effbc8bde6a2037dd862ff9229c28b41a03c7,0x6c4adcf102f0fd60f3ee6855459ad4fbdc774dfb3af23dde5be07f77b473d590aa3180e4eebfc5f1d94175095886942f86e481833a056b4faa3ef492c4f9aeb606fde3036a8479552146fd64e24d96836bda55e23cffff5aee754f15c012f000,0x9c43d9ae7d7b596b94727f04f836e2e2bddb2274fe074682d77659e9a5f1406cd75b87113452cf1666df9aff8e376f02a76318227fc760c6fe5444e9d64e7816bb48db247a5a0dc4dcf654724de49489964adf5dacfd297ba83937fc3bbb4542', [(0, 'AAAAB3NzaC1kc3MAAAAo0T2t6dr8Qr5DK2B0ETwUa3BhxMLPjLY0ZtlOACmP/kUt3JgByLv+3g==')]),
++            ('p256', 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHkYQ0sQoq5LbJI1VMWhw3bV43TSYi3WVpqIgKcBKK91TcFFlAMZgceOHQ0xAFYcSczIttLvFu+xkcLXrRd4N7Q=', 'AAAAIQCV/1VqiCsHZm/n+bq7lHEHlyy7KFgZBEbzqYaWtbx48Q==', 256, b'nistp256,0x7918434b10a2ae4b6c923554c5a1c376d5e374d2622dd6569a8880a70128af75,0x4dc14594031981c78e1d0d3100561c49ccc8b6d2ef16efb191c2d7ad177837b4', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAABIAAAAIFrd1bjr4GHfWsM9RNJ+y4Z0eVwpRRv3IvNE2moaA1x3AAAAIFWcwwCE69kS4oybMFEUP4r7qFAY8tSb1o8ItSFcSe2+')]),
++            ('p384', 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBMYK8PUtfAlJwKaBTIGEuCzH0vqOMa4UbcjrBbTbkGVSUnfo+nuC80NCdj9JJMs1jvfF8GzKLc5z8H3nZyM741/BUFjV7rEHsQFDek4KyWvKkEgKiTlZid19VukNo1q2Hg==', 'AAAAMGsfTmdB4zHdbiQ2euTSdzM6UKEOnrVjMAWwHEYvmG5qUOcBnn62fJDRJy67L+QGdg==', 384, b'nistp384,0xc60af0f52d7c0949c0a6814c8184b82cc7d2fa8e31ae146dc8eb05b4db9065525277e8fa7b82f34342763f4924cb358e,0xf7c5f06cca2dce73f07de767233be35fc15058d5eeb107b101437a4e0ac96bca90480a89395989dd7d56e90da35ab61e', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAABoAAAAMFqCJ+gBP4GGc7yCy9F5e4EjkDlvYBYsYWMYFg3Md/ml7Md8pIrN7I0+8bFb99rZjQAAADAsM2kI+QOcgK+oVDaP0qkLRRbWDO1dSU5I2YfETyHVLYFNdRmgdWo6002XTO9jAsk=')]),
++            ('p521', 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFrGthlKM152vu2Ghk+R7iO9/M6e+hTehNZ6+FBwof4HPkPB2/HHXj5+w5ynWyUrWiX5TI2riuJEIrJErcRH5LglADnJDX2w4yrKZ+wDHSz9lwh9p2F+B5R952es6gX3RJRkGA+qhKpKup8gKx78RMbleX8wgRtIu+4YMUnKb1edREiRg==', 'AAAAQgFh7VNJFUljWhhyAEiL0z+UPs/QggcMTd3Vv2aKDeBdCRl5di8r+BMm39L7bRzxRMEtW5NSKlDtE8MFEGdIE9khsw==', 521, b'nistp521,0x16b1ad86528cd79dafbb61a193e47b88ef7f33a7be8537a1359ebe141c287f81cf90f076fc71d78f9fb0e729d6c94ad6897e53236ae2b89108ac912b7111f92e094,0xe72435f6c38cab299fb00c74b3f65c21f69d85f81e51f79d9eb3a817dd125190603eaa12a92aea7c80ac7bf1131b95e5fcc2046d22efb860c52729bd5e75112246', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAACLAAAAQVBkbaCKivgvc+68CULCdPayjzRUYZdj1G2pLyiPWTdmJKVKF/W1oDAtjMZlP53tqCpGxDdrLoJH2A39k6g5MgNjAAAAQgGrNcesPBw/HMopBQ1JqOG1cSlAzjiFT34FvM68ZhdIjbQ0eHFuYs97RekQ8dpxmkuM88e63ATbZy4yDX06pKgmuQ==')]),
++            ('dsa', 'AAAAB3NzaC1kc3MAAABhAJyWZzjVddGdyc5JPu/WPrC07vKRAmlqO6TUi49ah96iRcM7/D1aRMVAdYBepQ2mf1fsQTmvoC9KgQa79nN3kHhz0voQBKOuKI1ZAodfVOgpP4xmcXgjaA73Vjz22n4newAAABUA6l7/vIveaiA33YYv+SKcKLQaA8cAAABgbErc8QLw/WDz7mhVRZrU+9x3Tfs68j3eW+B/d7Rz1ZCqMYDk7r/F8dlBdQlYhpQvhuSBgzoFa0+qPvSSxPmutgb94wNqhHlVIUb9ZOJNloNr2lXiPP//Wu51TxXAEvAAAAAAYQCcQ9mufXtZa5RyfwT4NuLivdsidP4HRoLXdlnppfFAbNdbhxE0Us8WZt+a/443bwKnYxgif8dgxv5UROnWTngWu0jbJHpaDcTc9lRyTeSUiZZK312s/Sl7qDk3/Du7RUI=', 'AAAAFGx3ft7G8AQzFsjhle7PWardUXh3', 768, b'0x9c966738d575d19dc9ce493eefd63eb0b4eef29102696a3ba4d48b8f5a87dea245c33bfc3d5a44c54075805ea50da67f57ec4139afa02f4a8106bbf67377907873d2fa1004a3ae288d5902875f54e8293f8c66717823680ef7563cf6da7e277b,0xea5effbc8bde6a2037dd862ff9229c28b41a03c7,0x6c4adcf102f0fd60f3ee6855459ad4fbdc774dfb3af23dde5be07f77b473d590aa3180e4eebfc5f1d94175095886942f86e481833a056b4faa3ef492c4f9aeb606fde3036a8479552146fd64e24d96836bda55e23cffff5aee754f15c012f000,0x9c43d9ae7d7b596b94727f04f836e2e2bddb2274fe074682d77659e9a5f1406cd75b87113452cf1666df9aff8e376f02a76318227fc760c6fe5444e9d64e7816bb48db247a5a0dc4dcf654724de49489964adf5dacfd297ba83937fc3bbb4542', [(0, 'AAAAB3NzaC1kc3MAAAAoyCVHLG2QqdMx7NiCWaThx6tDA5mf7UGl+8By0IzmSldBujsGKNs20g==')]),
+             ('rsa', 'AAAAB3NzaC1yc2EAAAABJQAAAGEA2ChX9+mQD/NULFkBrxLDI8d1PHgrInC2u11U4Grqu4oVzKvnFROo6DZeCu6sKhFJE5CnIL7evAthQ9hkXVHDhQ7xGVauzqyHGdIU4/pHRScAYWBv/PZOlNMrSoP/PP91', 'AAAAYCMNdgyGvWpez2EjMLSbQj0nQ3GW8jzvru3zdYwtA3hblNUU9QpWNxDmOMOApkwCzUgsdIPsBxctIeWT2h+v8sVOH+d66LCaNmNR0lp+dQ+iXM67hcGNuxJwRdMupD9ZbQAAADEA7XMrMAb4WuHaFafoTfGrf6Jhdy9Ozjqi1fStuld7Nj9JkoZluiL2dCwIrxqOjwU5AAAAMQDpC1gYiGVSPeDRILr2oxREtXWOsW+/ZZTfZNX7lvoufnp+qvwZPqvZnXQFHyZ8qB0AAAAwQE0wx8TPgcvRVEVv8Wt+o1NFlkJZayWD5hqpe/8AqUMZbqfg/aiso5mvecDLFgfV', 768, b'0x25,0xd82857f7e9900ff3542c5901af12c323c7753c782b2270b6bb5d54e06aeabb8a15ccabe71513a8e8365e0aeeac2a11491390a720bedebc0b6143d8645d51c3850ef11956aeceac8719d214e3fa4745270061606ffcf64e94d32b4a83ff3cff75', [(0, 'AAAAB3NzaC1yc2EAAABgrLSC4635RCsH1b3en58NqLsrH7PKRZyb3YmRasOyr8xIZMSlKZyxNg+kkn9OgBzbH9vChafzarfHyVwtJE2IMt3uwxTIWjwgwH19tc16k8YmNfDzujmB6OFOArmzKJgJ'), (2, 'AAAADHJzYS1zaGEyLTI1NgAAAGAJszr04BZlVBEdRLGOv1rTJwPiid/0I6/MycSH+noahvUH2wjrRhqDuv51F4nKYF5J9vBsEotTSrSF/cnLsliCdvVkEfmvhdcn/jx2LWF2OfjqETiYSc69Dde9UFmAPds='), (4, 'AAAADHJzYS1zaGEyLTUxMgAAAGBxfZ2m+WjvZ5YV5RFm0+w84CgHQ95EPndoAha0PCMc93AUHBmoHnezsJvEGuLovUm35w/0POmUNHI7HzM9PECwXrV0rO6N/HL/oFxJuDYmeqCpjMVmN8QXka+yxs2GEtA=')]),
+         ]
+ 
+diff --git a/test/testcrypt-func.h b/test/testcrypt-func.h
+index bd007293..cff2b86e 100644
+--- a/test/testcrypt-func.h
++++ b/test/testcrypt-func.h
+@@ -327,6 +327,12 @@ FUNC(opt_val_string, key_components_nth_str,
+ FUNC(opt_val_mpint, key_components_nth_mp, ARG(val_keycomponents, kc),
+      ARG(uint, n))
+ 
++/*
++ * DSA nonce generation.
++ */
++FUNC(opt_val_mpint, rfc6979, ARG(hashalg, hash), ARG(val_mpint, modulus),
++     ARG(val_mpint, private_key), ARG(val_string_ptrlen, message))
++
+ /*
+  * The ssh_cipher abstraction. The in-place encrypt and decrypt
+  * functions are wrapped to replace them with versions that take one
+diff --git a/test/testsc.c b/test/testsc.c
+index 0a643e97..3e7becb4 100644
+--- a/test/testsc.c
++++ b/test/testsc.c
+@@ -430,6 +430,8 @@ VOLATILE_WRAPPED_DEFN(static, size_t, looplimit, (size_t x))
+     X(argon2)                                   \
+     X(primegen_probabilistic)                   \
+     X(ntru)                                     \
++    X(rfc6979_setup)                            \
++    X(rfc6979_attempt)                          \
+     /* end of list */
+ 
+ static void test_mp_get_nbits(void)
+@@ -1743,6 +1745,63 @@ static void test_ntru(void)
+     strbuf_free(buffer);
+ }
+ 
++static void test_rfc6979_setup(void)
++{
++    mp_int *q = mp_new(512);
++    mp_int *x = mp_new(512);
++
++    strbuf *message = strbuf_new();
++    strbuf_append(message, 123);
++
++    RFC6979 *s = rfc6979_new(&ssh_sha256, q, x);
++
++    for (size_t i = 0; i < looplimit(20); i++) {
++        random_read(message->u, message->len);
++        mp_random_fill(q);
++        mp_random_fill(x);
++
++        log_start();
++        rfc6979_setup(s, ptrlen_from_strbuf(message));
++        log_end();
++    }
++
++    rfc6979_free(s);
++    mp_free(q);
++    mp_free(x);
++    strbuf_free(message);
++}
++
++static void test_rfc6979_attempt(void)
++{
++    mp_int *q = mp_new(512);
++    mp_int *x = mp_new(512);
++
++    strbuf *message = strbuf_new();
++    strbuf_append(message, 123);
++
++    RFC6979 *s = rfc6979_new(&ssh_sha256, q, x);
++
++    for (size_t i = 0; i < looplimit(5); i++) {
++        random_read(message->u, message->len);
++        mp_random_fill(q);
++        mp_random_fill(x);
++
++        rfc6979_setup(s, ptrlen_from_strbuf(message));
++
++        for (size_t j = 0; j < looplimit(10); j++) {
++            log_start();
++            RFC6979Result result = rfc6979_attempt(s);
++            mp_free(result.k);
++            log_end();
++        }
++    }
++
++    rfc6979_free(s);
++    mp_free(q);
++    mp_free(x);
++    strbuf_free(message);
++}
++
+ static const struct test tests[] = {
+ #define STRUCT_TEST(X) { #X, test_##X },
+ TESTLIST(STRUCT_TEST)
diff -Nru putty-0.78/debian/patches/series putty-0.78/debian/patches/series
--- putty-0.78/debian/patches/series	2023-12-18 19:13:47.000000000 +0000
+++ putty-0.78/debian/patches/series	2024-07-16 10:44:03.000000000 +0000
@@ -6,3 +6,5 @@
 terrapin-warning.patch
 remove-fatal-error-reporting-from-scan_kexinit.patch
 terrapin-warning-reconfiguration.patch
+0009-Add-an-extra-HMAC-constructor-function.patch
+0010-Switch-to-RFC-6979-for-DSA-nonce-generation.patch
diff -Nru putty-0.78/debian/putty.NEWS putty-0.78/debian/putty.NEWS
--- putty-0.78/debian/putty.NEWS	1970-01-01 00:00:00.000000000 +0000
+++ putty-0.78/debian/putty.NEWS	2024-07-16 10:44:03.000000000 +0000
@@ -0,0 +1,28 @@
+putty (0.78-2+deb12u2) bookworm; urgency=medium
+
+   Previous PuTTY versions were affected by CVE-2024-31497,
+   a critical vulnerability that generates signatures
+   from ECDSA private keys that use the NIST P521 curve.
+   The effect of the vulnerability is to compromise the private key.
+
+   An attacker in possession of a few dozen signed messages and the public
+   key has enough information to deduce the private key, and then forge
+   signatures as if they were made by the victim. This allows the attacker
+   to (for instance) log in to any servers the victim uses that key for.
+   To obtain these signatures, an attacker need only briefly compromise
+   any server the victim uses the key to authenticate to.
+
+   Therefore, if you have any NIST-P521 ECDSA key, we strongly recommend
+   that you replace it with one created with a fixed version of
+   PuTTY. Then, revoke the old public key and remove it from any
+   machine where you use it to log in, so that a signature
+   from the compromised key has no value any more.
+
+   The only affected key type is 521-bit ECDSA. That is, a key that appears
+   in Windows PuTTYgen with ecdsa-sha2-nistp521 at the start of the
+   'Key fingerprint' box, or is described as 'NIST p521', or has an id
+   starting ecdsa-sha2-nistp521 in the SSH protocol or the key file.
+   Other sizes of ECDSA, and other key algorithms, are unaffected.
+   In particular, Ed25519 is not affected. 
+
+ -- Bastien Roucari??s <ro...@debian.org>  Mon, 29 Apr 2024 16:55:15 +0000
\ Pas de fin de ligne ?? la fin du fichier
diff -Nru putty-0.78/debian/putty-tools.NEWS putty-0.78/debian/putty-tools.NEWS
--- putty-0.78/debian/putty-tools.NEWS	1970-01-01 00:00:00.000000000 +0000
+++ putty-0.78/debian/putty-tools.NEWS	2024-07-16 10:44:03.000000000 +0000
@@ -0,0 +1,28 @@
+putty (0.78-2+deb12u2) bookworm; urgency=medium
+
+   Previous PuTTY versions were affected by CVE-2024-31497,
+   a critical vulnerability that generates signatures
+   from ECDSA private keys that use the NIST P521 curve.
+   The effect of the vulnerability is to compromise the private key.
+
+   An attacker in possession of a few dozen signed messages and the public
+   key has enough information to deduce the private key, and then forge
+   signatures as if they were made by the victim. This allows the attacker
+   to (for instance) log in to any servers the victim uses that key for.
+   To obtain these signatures, an attacker need only briefly compromise
+   any server the victim uses the key to authenticate to.
+
+   Therefore, if you have any NIST-P521 ECDSA key, we strongly recommend
+   that you replace it with one created with a fixed version of
+   PuTTY. Then, revoke the old public key and remove it from any
+   machine where you use it to log in, so that a signature
+   from the compromised key has no value any more.
+
+   The only affected key type is 521-bit ECDSA. That is, a key that appears
+   in Windows PuTTYgen with ecdsa-sha2-nistp521 at the start of the
+   'Key fingerprint' box, or is described as 'NIST p521', or has an id
+   starting ecdsa-sha2-nistp521 in the SSH protocol or the key file.
+   Other sizes of ECDSA, and other key algorithms, are unaffected.
+   In particular, Ed25519 is not affected. 
+
+ -- Bastien Roucari??s <ro...@debian.org>  Mon, 29 Apr 2024 16:55:15 +0000
\ Pas de fin de ligne ?? la fin du fichier
diff -Nru putty-0.78/debian/rules putty-0.78/debian/rules
--- putty-0.78/debian/rules	2023-12-18 19:13:47.000000000 +0000
+++ putty-0.78/debian/rules	2024-07-16 10:44:03.000000000 +0000
@@ -20,6 +20,11 @@
 		"$(DEB_VENDOR)" "$(DEB_VERSION)" >doc/version.but
 	$(MAKE) -C debian/build doc
 
+execute_after_dh_auto_test-arch:
+ifeq (,$(filter nocheck,${DEB_BUILD_OPTIONS} ${DEB_BUILD_PROFILES}))
+	PUTTY_TESTCRYPT=./debian/build/testcrypt python3 ./test/cryptsuite.py
+endif
+
 execute_after_dh_auto_clean:
 	$(MAKE) -C icons clean
 	if [ -e debian/version.but.save ]; then \

Attachment: signature.asc
Description: This is a digitally signed message part.


--- End Message ---
--- Begin Message ---
Package: release.debian.org
Version: 12.7

Hi,

Each of these bugs relates to an update including in today's bookworm
12.7 point release.

Regards,

Adam

--- End Message ---

Reply via email to