Your message dated Mon, 24 Mar 2025 05:35:42 +0000
with message-id <e1twato-00dio4...@fasolo.debian.org>
and subject line Bug#1100293: fixed in python-xarray 2025.01.2-2
has caused the Debian Bug report #1100293,
regarding python-xarray: FTBFS: E       RuntimeWarning: invalid value 
encountered in sqrt
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
1100293: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1100293
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Package: src:python-xarray
Version: 2025.01.2-1
Severity: serious
Tags: ftbfs trixie sid

Dear maintainer:

During a rebuild of all packages in unstable, your package failed to build:

--------------------------------------------------------------------------------
[...]
 debian/rules clean
dh clean  --buildsystem=pybuild --with python3
   debian/rules override_dh_auto_clean
make[1]: Entering directory '/<<PKGBUILDDIR>>'
dh_auto_clean
        pybuild --clean -i python{version} -p 3.13
I: pybuild base:311: python3.13 setup.py clean 
/usr/lib/python3/dist-packages/setuptools_scm/_integration/setuptools.py:92: 
UserWarning: version of None already set
  warnings.warn(f"version of {dist_name} already set")
/usr/lib/python3/dist-packages/setuptools/dist.py:330: InformationOnly: 
Normalizing '2025.01.2' to '2025.1.2'
  self.metadata.version = self._normalize_version(self.metadata.version)
running clean
removing '/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_xarray/build' (and everything 
under it)
'build/bdist.linux-x86_64' does not exist -- can't clean it

[... snipped ...]

            else:
                raise ValueError(
                    f"unknown setting for chunked array handling in 
apply_ufunc: {dask}"
                )
        else:
            if vectorize:
                func = _vectorize(
                    func, signature, output_dtypes=output_dtypes, 
exclude_dims=exclude_dims
                )
    
>       result_data = func(*input_data)
E       RuntimeWarning: invalid value encountered in sqrt

xarray/core/computation.py:824: RuntimeWarning
______________ test_weighted_operations_keep_attr[None-False-std] ______________

operation = 'std', as_dataset = False, keep_attrs = None

    @pytest.mark.parametrize(
        "operation",
        ("sum_of_weights", "sum", "mean", "sum_of_squares", "var", "std", 
"quantile"),
    )
    @pytest.mark.parametrize("as_dataset", (True, False))
    @pytest.mark.parametrize("keep_attrs", (True, False, None))
    def test_weighted_operations_keep_attr(operation, as_dataset, keep_attrs):
        weights = DataArray(np.random.randn(2, 2), attrs=dict(attr="weights"))
        data = DataArray(np.random.randn(2, 2))
    
        if as_dataset:
            data = data.to_dataset(name="data")
    
        data.attrs = dict(attr="weights")
    
        kwargs = {"keep_attrs": keep_attrs}
        if operation == "quantile":
            kwargs["q"] = 0.5
    
>       result = getattr(data.weighted(weights), operation)(**kwargs)

xarray/tests/test_weighted.py:743: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
xarray/core/weighted.py:517: in std
    return self._implementation(
xarray/core/weighted.py:546: in _implementation
    dataset = dataset.map(func, dim=dim, **kwargs)
xarray/core/dataset.py:7172: in map
    k: maybe_wrap_array(v, func(v, *args, **kwargs))
xarray/core/weighted.py:316: in _weighted_std
    return cast("T_DataArray", np.sqrt(self._weighted_var(da, dim, skipna)))
xarray/core/arithmetic.py:83: in __array_ufunc__
    return apply_ufunc(
xarray/core/computation.py:1271: in apply_ufunc
    return apply_dataarray_vfunc(
xarray/core/computation.py:313: in apply_dataarray_vfunc
    result_var = func(*data_vars)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

func = <ufunc 'sqrt'>, signature = _UFuncSignature([()], [()])
exclude_dims = frozenset(), dask = 'allowed', output_dtypes = None

    def apply_variable_ufunc(
        func,
        *args,
        signature: _UFuncSignature,
        exclude_dims=frozenset(),
        dask="forbidden",
        output_dtypes=None,
        vectorize=False,
        keep_attrs="override",
        dask_gufunc_kwargs=None,
    ) -> Variable | tuple[Variable, ...]:
        """Apply a ndarray level function over Variable and/or ndarray 
objects."""
        from xarray.core.formatting import short_array_repr
        from xarray.core.variable import Variable, as_compatible_data
    
        dim_sizes = unified_dim_sizes(
            (a for a in args if hasattr(a, "dims")), exclude_dims=exclude_dims
        )
        broadcast_dims = tuple(
            dim for dim in dim_sizes if dim not in signature.all_core_dims
        )
        output_dims = [broadcast_dims + out for out in 
signature.output_core_dims]
    
        input_data = [
            (
                broadcast_compat_data(arg, broadcast_dims, core_dims)
                if isinstance(arg, Variable)
                else arg
            )
            for arg, core_dims in zip(args, signature.input_core_dims, 
strict=True)
        ]
    
        if any(is_chunked_array(array) for array in input_data):
            if dask == "forbidden":
                raise ValueError(
                    "apply_ufunc encountered a chunked array on an "
                    "argument, but handling for chunked arrays has not "
                    "been enabled. Either set the ``dask`` argument "
                    "or load your data into memory first with "
                    "``.load()`` or ``.compute()``"
                )
            elif dask == "parallelized":
                chunkmanager = get_chunked_array_type(*input_data)
    
                numpy_func = func
    
                if dask_gufunc_kwargs is None:
                    dask_gufunc_kwargs = {}
                else:
                    dask_gufunc_kwargs = dask_gufunc_kwargs.copy()
    
                allow_rechunk = dask_gufunc_kwargs.get("allow_rechunk", None)
                if allow_rechunk is None:
                    for n, (data, core_dims) in enumerate(
                        zip(input_data, signature.input_core_dims, strict=True)
                    ):
                        if is_chunked_array(data):
                            # core dimensions cannot span multiple chunks
                            for axis, dim in enumerate(core_dims, 
start=-len(core_dims)):
                                if len(data.chunks[axis]) != 1:
                                    raise ValueError(
                                        f"dimension {dim} on {n}th function 
argument to "
                                        "apply_ufunc with dask='parallelized' 
consists of "
                                        "multiple chunks, but is also a core 
dimension. To "
                                        "fix, either rechunk into a single 
array chunk along "
                                        f"this dimension, i.e., 
``.chunk(dict({dim}=-1))``, or "
                                        "pass ``allow_rechunk=True`` in 
``dask_gufunc_kwargs`` "
                                        "but beware that this may significantly 
increase memory usage."
                                    )
                    dask_gufunc_kwargs["allow_rechunk"] = True
    
                output_sizes = dask_gufunc_kwargs.pop("output_sizes", {})
                if output_sizes:
                    output_sizes_renamed = {}
                    for key, value in output_sizes.items():
                        if key not in signature.all_output_core_dims:
                            raise ValueError(
                                f"dimension '{key}' in 'output_sizes' must 
correspond to output_core_dims"
                            )
                        output_sizes_renamed[signature.dims_map[key]] = value
                    dask_gufunc_kwargs["output_sizes"] = output_sizes_renamed
    
                for key in signature.all_output_core_dims:
                    if (
                        key not in signature.all_input_core_dims or key in 
exclude_dims
                    ) and key not in output_sizes:
                        raise ValueError(
                            f"dimension '{key}' in 'output_core_dims' needs 
corresponding (dim, size) in 'output_sizes'"
                        )
    
                def func(*arrays):
                    res = chunkmanager.apply_gufunc(
                        numpy_func,
                        signature.to_gufunc_string(exclude_dims),
                        *arrays,
                        vectorize=vectorize,
                        output_dtypes=output_dtypes,
                        **dask_gufunc_kwargs,
                    )
    
                    return res
    
            elif dask == "allowed":
                pass
            else:
                raise ValueError(
                    f"unknown setting for chunked array handling in 
apply_ufunc: {dask}"
                )
        else:
            if vectorize:
                func = _vectorize(
                    func, signature, output_dtypes=output_dtypes, 
exclude_dims=exclude_dims
                )
    
>       result_data = func(*input_data)
E       RuntimeWarning: invalid value encountered in sqrt

xarray/core/computation.py:824: RuntimeWarning
_______________ test_weighted_operations_keep_attr_da_in_ds[std] _______________

operation = 'std'

    @pytest.mark.parametrize(
        "operation",
        ("sum_of_weights", "sum", "mean", "sum_of_squares", "var", "std", 
"quantile"),
    )
    def test_weighted_operations_keep_attr_da_in_ds(operation):
        # GH #3595
    
        weights = DataArray(np.random.randn(2, 2))
        data = DataArray(np.random.randn(2, 2), attrs=dict(attr="data"))
        data = data.to_dataset(name="a")
    
        kwargs = {"keep_attrs": True}
        if operation == "quantile":
            kwargs["q"] = 0.5
    
>       result = getattr(data.weighted(weights), operation)(**kwargs)

xarray/tests/test_weighted.py:768: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
xarray/core/weighted.py:517: in std
    return self._implementation(
xarray/core/weighted.py:554: in _implementation
    return self.obj.map(func, dim=dim, **kwargs)
xarray/core/dataset.py:7172: in map
    k: maybe_wrap_array(v, func(v, *args, **kwargs))
xarray/core/weighted.py:316: in _weighted_std
    return cast("T_DataArray", np.sqrt(self._weighted_var(da, dim, skipna)))
xarray/core/arithmetic.py:83: in __array_ufunc__
    return apply_ufunc(
xarray/core/computation.py:1271: in apply_ufunc
    return apply_dataarray_vfunc(
xarray/core/computation.py:313: in apply_dataarray_vfunc
    result_var = func(*data_vars)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

func = <ufunc 'sqrt'>, signature = _UFuncSignature([()], [()])
exclude_dims = frozenset(), dask = 'allowed', output_dtypes = None

    def apply_variable_ufunc(
        func,
        *args,
        signature: _UFuncSignature,
        exclude_dims=frozenset(),
        dask="forbidden",
        output_dtypes=None,
        vectorize=False,
        keep_attrs="override",
        dask_gufunc_kwargs=None,
    ) -> Variable | tuple[Variable, ...]:
        """Apply a ndarray level function over Variable and/or ndarray 
objects."""
        from xarray.core.formatting import short_array_repr
        from xarray.core.variable import Variable, as_compatible_data
    
        dim_sizes = unified_dim_sizes(
            (a for a in args if hasattr(a, "dims")), exclude_dims=exclude_dims
        )
        broadcast_dims = tuple(
            dim for dim in dim_sizes if dim not in signature.all_core_dims
        )
        output_dims = [broadcast_dims + out for out in 
signature.output_core_dims]
    
        input_data = [
            (
                broadcast_compat_data(arg, broadcast_dims, core_dims)
                if isinstance(arg, Variable)
                else arg
            )
            for arg, core_dims in zip(args, signature.input_core_dims, 
strict=True)
        ]
    
        if any(is_chunked_array(array) for array in input_data):
            if dask == "forbidden":
                raise ValueError(
                    "apply_ufunc encountered a chunked array on an "
                    "argument, but handling for chunked arrays has not "
                    "been enabled. Either set the ``dask`` argument "
                    "or load your data into memory first with "
                    "``.load()`` or ``.compute()``"
                )
            elif dask == "parallelized":
                chunkmanager = get_chunked_array_type(*input_data)
    
                numpy_func = func
    
                if dask_gufunc_kwargs is None:
                    dask_gufunc_kwargs = {}
                else:
                    dask_gufunc_kwargs = dask_gufunc_kwargs.copy()
    
                allow_rechunk = dask_gufunc_kwargs.get("allow_rechunk", None)
                if allow_rechunk is None:
                    for n, (data, core_dims) in enumerate(
                        zip(input_data, signature.input_core_dims, strict=True)
                    ):
                        if is_chunked_array(data):
                            # core dimensions cannot span multiple chunks
                            for axis, dim in enumerate(core_dims, 
start=-len(core_dims)):
                                if len(data.chunks[axis]) != 1:
                                    raise ValueError(
                                        f"dimension {dim} on {n}th function 
argument to "
                                        "apply_ufunc with dask='parallelized' 
consists of "
                                        "multiple chunks, but is also a core 
dimension. To "
                                        "fix, either rechunk into a single 
array chunk along "
                                        f"this dimension, i.e., 
``.chunk(dict({dim}=-1))``, or "
                                        "pass ``allow_rechunk=True`` in 
``dask_gufunc_kwargs`` "
                                        "but beware that this may significantly 
increase memory usage."
                                    )
                    dask_gufunc_kwargs["allow_rechunk"] = True
    
                output_sizes = dask_gufunc_kwargs.pop("output_sizes", {})
                if output_sizes:
                    output_sizes_renamed = {}
                    for key, value in output_sizes.items():
                        if key not in signature.all_output_core_dims:
                            raise ValueError(
                                f"dimension '{key}' in 'output_sizes' must 
correspond to output_core_dims"
                            )
                        output_sizes_renamed[signature.dims_map[key]] = value
                    dask_gufunc_kwargs["output_sizes"] = output_sizes_renamed
    
                for key in signature.all_output_core_dims:
                    if (
                        key not in signature.all_input_core_dims or key in 
exclude_dims
                    ) and key not in output_sizes:
                        raise ValueError(
                            f"dimension '{key}' in 'output_core_dims' needs 
corresponding (dim, size) in 'output_sizes'"
                        )
    
                def func(*arrays):
                    res = chunkmanager.apply_gufunc(
                        numpy_func,
                        signature.to_gufunc_string(exclude_dims),
                        *arrays,
                        vectorize=vectorize,
                        output_dtypes=output_dtypes,
                        **dask_gufunc_kwargs,
                    )
    
                    return res
    
            elif dask == "allowed":
                pass
            else:
                raise ValueError(
                    f"unknown setting for chunked array handling in 
apply_ufunc: {dask}"
                )
        else:
            if vectorize:
                func = _vectorize(
                    func, signature, output_dtypes=output_dtypes, 
exclude_dims=exclude_dims
                )
    
>       result_data = func(*input_data)
E       RuntimeWarning: invalid value encountered in sqrt

xarray/core/computation.py:824: RuntimeWarning
=============================== warnings summary ===============================
xarray/tests/test_backends.py: 722 warnings
  /usr/lib/python3/dist-packages/zarr/api/asynchronous.py:203: UserWarning: 
Consolidated metadata is currently not part in the Zarr format 3 specification. 
It may not be supported by other zarr implementations and may change in the 
future.
    warnings.warn(

xarray/tests/test_backends.py: 896 warnings
  /usr/lib/python3/dist-packages/zarr/codecs/vlen_utf8.py:44: UserWarning: The 
codec `vlen-utf8` is currently not part in the Zarr format 3 specification. It 
may not be supported by other zarr implementations and may change in the future.
    return cls(**configuration_parsed)

xarray/tests/test_backends.py: 171 warnings
  /usr/lib/python3/dist-packages/zarr/core/array.py:3989: UserWarning: The 
dtype `<U1` is currently not part in the Zarr format 3 specification. It may 
not be supported by other zarr implementations and may change in the future.
    meta = AsyncArray._create_metadata_v3(

xarray/tests/test_backends.py: 217 warnings
  /usr/lib/python3/dist-packages/zarr/codecs/vlen_utf8.py:99: UserWarning: The 
codec `vlen-bytes` is currently not part in the Zarr format 3 specification. It 
may not be supported by other zarr implementations and may change in the future.
    return cls(**configuration_parsed)

xarray/tests/test_backends.py::TestZarrDictStore::test_zero_dimensional_variable[3]
xarray/tests/test_backends.py::TestZarrDirectoryStore::test_zero_dimensional_variable[3]
xarray/tests/test_backends.py::TestZarrWriteEmpty::test_zero_dimensional_variable[3]
  /usr/lib/python3/dist-packages/zarr/core/array.py:3989: UserWarning: The 
dtype `|S6` is currently not part in the Zarr format 3 specification. It may 
not be supported by other zarr implementations and may change in the future.
    meta = AsyncArray._create_metadata_v3(

xarray/tests/test_backends.py::TestZarrDictStore::test_zero_dimensional_variable[3]
xarray/tests/test_backends.py::TestZarrDirectoryStore::test_zero_dimensional_variable[3]
xarray/tests/test_backends.py::TestZarrWriteEmpty::test_zero_dimensional_variable[3]
  /usr/lib/python3/dist-packages/zarr/core/array.py:3989: UserWarning: The 
dtype `<U6` is currently not part in the Zarr format 3 specification. It may 
not be supported by other zarr implementations and may change in the future.
    meta = AsyncArray._create_metadata_v3(

xarray/tests/test_backends.py: 18 warnings
  /usr/lib/python3/dist-packages/zarr/core/array.py:3989: UserWarning: The 
dtype `|S4` is currently not part in the Zarr format 3 specification. It may 
not be supported by other zarr implementations and may change in the future.
    meta = AsyncArray._create_metadata_v3(

xarray/tests/test_backends.py: 48 warnings
  /usr/lib/python3/dist-packages/zarr/core/array.py:3989: UserWarning: The 
dtype `StringDType()` is currently not part in the Zarr format 3 specification. 
It may not be supported by other zarr implementations and may change in the 
future.
    meta = AsyncArray._create_metadata_v3(

xarray/tests/test_backends.py::TestZarrDictStore::test_roundtrip_string_data[3]
xarray/tests/test_backends.py::TestZarrDirectoryStore::test_roundtrip_string_data[3]
xarray/tests/test_backends.py::TestZarrWriteEmpty::test_roundtrip_string_data[3]
  /usr/lib/python3/dist-packages/zarr/core/array.py:3989: UserWarning: The 
dtype `<U4` is currently not part in the Zarr format 3 specification. It may 
not be supported by other zarr implementations and may change in the future.
    meta = AsyncArray._create_metadata_v3(

xarray/tests/test_backends.py: 33 warnings
  /usr/lib/python3/dist-packages/zarr/core/array.py:3989: UserWarning: The 
dtype `<U2` is currently not part in the Zarr format 3 specification. It may 
not be supported by other zarr implementations and may change in the future.
    meta = AsyncArray._create_metadata_v3(

xarray/tests/test_backends.py: 33 warnings
  /usr/lib/python3/dist-packages/zarr/core/array.py:3989: UserWarning: The 
dtype `|S2` is currently not part in the Zarr format 3 specification. It may 
not be supported by other zarr implementations and may change in the future.
    meta = AsyncArray._create_metadata_v3(

xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_open_fileobj
  /usr/lib/python3/dist-packages/_pytest/unraisableexception.py:85: 
PytestUnraisableExceptionWarning: Exception ignored in: <function 
CachingFileManager.__del__ at 0x7f4a3f4bafc0>
  
  Traceback (most recent call last):
    File 
"/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_xarray/build/xarray/backends/file_manager.py",
 line 255, in __del__
      warnings.warn(
      ~~~~~~~~~~~~~^
          f"deallocating {self}, but file is not already closed. "
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
      ...<2 lines>...
          stacklevel=2,
          ^^^^^^^^^^^^^
      )
      ^
  RuntimeWarning: deallocating CachingFileManager(<class 'h5netcdf.core.File'>, 
<_io.BufferedReader name='/tmp/tmpo1h3uc_h/temp-2487.nc'>, mode='r', 
kwargs={'invalid_netcdf': None, 'decode_vlen_strings': True, 'driver': None}, 
manager_id='58f3b5b1-d353-4530-a4b1-d54ea76f5452'), but file is not already 
closed. This may indicate a bug.
  
    warnings.warn(pytest.PytestUnraisableExceptionWarning(msg))

xarray/tests/test_backends.py::test_h5netcdf_storage_options
  /usr/lib/python3/dist-packages/_pytest/python.py:159: RuntimeWarning: 
deallocating CachingFileManager(<class 'h5netcdf.core.File'>, 
<fsspec.implementations.local.LocalFileOpener object at 0x7f4a2a2625f0>, 
mode='r', kwargs={'invalid_netcdf': None, 'decode_vlen_strings': True, 
'driver': None}, manager_id='5b831278-e650-4485-835b-9372ce9ae114'), but file 
is not already closed. This may indicate a bug.
    result = testfunction(**testargs)

xarray/tests/test_backends.py::test_h5netcdf_storage_options
  /usr/lib/python3/dist-packages/_pytest/python.py:159: RuntimeWarning: 
deallocating CachingFileManager(<class 'h5netcdf.core.File'>, 
<fsspec.implementations.local.LocalFileOpener object at 0x7f4a2a263100>, 
mode='r', kwargs={'invalid_netcdf': None, 'decode_vlen_strings': True, 
'driver': None}, manager_id='4b681f13-bb3a-48e9-80af-2783a46dd492'), but file 
is not already closed. This may indicate a bug.
    result = testfunction(**testargs)

xarray/tests/test_coding_times.py::test_roundtrip_datetime64_nanosecond_precision[1677-09-21T00:12:43.145225-us-int64-None-False]
xarray/tests/test_coding_times.py::test_roundtrip_datetime64_nanosecond_precision[1970-01-01T00:00:01.000001-us-int64-None-False]
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_xarray/build/xarray/tests/test_coding_times.py:1295:
 UserWarning: Converting non-nanosecond precision datetime values to nanosecond 
precision. This behavior can eventually be relaxed in xarray, as it is an 
artifact from pandas which is now beginning to support non-nanosecond precision 
values. This warning is caused by passing non-nanosecond np.datetime64 or 
np.timedelta64 values to the DataArray or Variable constructor; it can be 
silenced by converting the values to nanosecond precision ahead of time.
    var = Variable(["time"], times, encoding=encoding)

xarray/tests/test_computation.py::test_unified_dim_sizes
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_xarray/build/xarray/namedarray/core.py:264:
 UserWarning: Duplicate dimension names present: dimensions {'x'} appear more 
than once in dims=('x', 'x'). We do not yet support duplicate dimension names, 
but we do allow initial construction of the object. We recommend you rename the 
dims immediately to become distinct, as most xarray functionality is likely to 
fail silently if you do not. To rename the dimensions you will need to set the 
``.dims`` attribute of each variable, ``e.g. var.dims=('x0', 'x1')``.
    self._dims = self._parse_dimensions(dims)

xarray/tests/test_conventions.py: 1 warning
xarray/tests/test_dataset.py: 1 warning
xarray/tests/test_rolling.py: 36 warnings
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_xarray/build/xarray/core/duck_array_ops.py:234:
 RuntimeWarning: invalid value encountered in cast
    return data.astype(dtype, **kwargs)

xarray/tests/test_dask.py: 12 warnings
  /usr/lib/python3/dist-packages/numpy/_core/numeric.py:442: RuntimeWarning: 
invalid value encountered in cast
    multiarray.copyto(res, fill_value, casting='unsafe')

xarray/tests/test_dataset.py::TestDataset::test_to_and_from_dict_with_nan_nat[array]
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_xarray/build/xarray/tests/test_dataset.py:5170:
 UserWarning: Converting non-nanosecond precision datetime values to nanosecond 
precision. This behavior can eventually be relaxed in xarray, as it is an 
artifact from pandas which is now beginning to support non-nanosecond precision 
values. This warning is caused by passing non-nanosecond np.datetime64 or 
np.timedelta64 values to the DataArray or Variable constructor; it can be 
silenced by converting the values to nanosecond precision ahead of time.
    roundtripped = Dataset.from_dict(ds.to_dict(data=data))

xarray/tests/test_duck_array_ops.py::test_cftime_datetime_mean[True]
  /usr/lib/python3/dist-packages/dask/array/core.py:5083: DeprecationWarning: 
Bitwise inversion '~' on bool is deprecated and will be removed in Python 3.16. 
This returns the bitwise inversion of the underlying int object and is usually 
not what you expect from negating a bool. Use the 'not' operator for boolean 
negation or ~int(x) if you really want the bitwise inversion of the underlying 
int.
    result = function(*args, **kwargs)

xarray/tests/test_strategies.py: 10 warnings
  /usr/lib/python3/dist-packages/numpy/_core/fromnumeric.py:86: RuntimeWarning: 
invalid value encountered in reduce
    return ufunc.reduce(obj, axis, dtype, out, **passkwargs)

xarray/tests/test_strategies.py::TestReduction::test_mean
xarray/tests/test_strategies.py::TestReduction::test_mean
xarray/tests/test_strategies.py::TestReduction::test_mean
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_xarray/build/xarray/tests/test_strategies.py:277:
 RuntimeWarning: Mean of empty slice
    expected = np.nanmean(var.data, axis=reduction_axes)

xarray/tests/test_variable.py::TestIndexVariable::test_to_index_multiindex_level
  
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_xarray/build/xarray/tests/test_variable.py:2435:
 FutureWarning: the `pandas.MultiIndex` object(s) passed as 'x' coordinate(s) 
or data variable(s) will no longer be implicitly promoted and wrapped into 
multiple indexed coordinates in the future (i.e., one coordinate for each 
multi-index level + one dimension coordinate). If you want to keep this 
behavior, you need to first wrap it explicitly using `mindex_coords = 
xarray.Coordinates.from_pandas_multiindex(mindex_obj, 'dim')` and pass it as 
coordinates, e.g., `xarray.Dataset(coords=mindex_coords)`, 
`dataset.assign_coords(mindex_coords)` or 
`dataarray.assign_coords(mindex_coords)`.
    ds = Dataset(coords={"x": midx})

xarray/tests/test_weighted.py::test_weighted_quantile_3D[None-True-q1-a]
xarray/tests/test_weighted.py::test_weighted_quantile_3D[None-True-q2-a]
  /usr/lib/python3/dist-packages/numpy/lib/_nanfunctions_impl.py:1620: 
RuntimeWarning: All-NaN slice encountered
    return fnb._ureduce(a,

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=========================== short test summary info ============================
FAILED 
xarray/tests/test_backends.py::TestZarrDictStore::test_hidden_zarr_keys[2]
FAILED 
xarray/tests/test_backends.py::TestZarrDirectoryStore::test_hidden_zarr_keys[2]
FAILED 
xarray/tests/test_backends.py::TestZarrWriteEmpty::test_hidden_zarr_keys[2]
FAILED xarray/tests/test_groupby.py::test_dask_da_groupby_quantile - Failed: ...
FAILED 
xarray/tests/test_weighted.py::test_weighted_operations_keep_attr[False-True-std]
FAILED 
xarray/tests/test_weighted.py::test_weighted_operations_keep_attr[False-False-std]
FAILED 
xarray/tests/test_weighted.py::test_weighted_operations_keep_attr[None-True-std]
FAILED 
xarray/tests/test_weighted.py::test_weighted_operations_keep_attr[None-False-std]
FAILED 
xarray/tests/test_weighted.py::test_weighted_operations_keep_attr_da_in_ds[std]
= 9 failed, 16789 passed, 1293 skipped, 73 xfailed, 107 xpassed, 2221 warnings 
in 234.58s (0:03:54) =
E: pybuild pybuild:389: test: plugin distutils failed with: exit code=1: cd 
/<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_xarray/build; python3.13 -m pytest 
# cleanup after tests
find .  -name 'tmp.zarr*' -delete
find: cannot delete ‘./.pybuild/cpython3_3.13_xarray/build/tmp.zarr.zip’: 
Directory not empty
make[1]: *** [debian/rules:43: override_dh_auto_test] Error 1
make[1]: Leaving directory '/<<PKGBUILDDIR>>'
make: *** [debian/rules:19: binary] Error 2
dpkg-buildpackage: error: debian/rules binary subprocess returned exit status 2
--------------------------------------------------------------------------------

The above is just how the build ends and not necessarily the most relevant part.
If required, the full build log is available here:

https://people.debian.org/~sanvila/build-logs/202503/

About the archive rebuild: The build was made on virtual machines from AWS,
using sbuild and a reduced chroot with only build-essential packages.

If you could not reproduce the bug please contact me privately, as I
am willing to provide ssh access to a virtual machine where the bug is
fully reproducible.

If this is really a bug in one of the build-depends, please use
reassign and add an affects on src:python-xarray, so that this is still
visible in the BTS web page for this package.

Thanks.

--- End Message ---
--- Begin Message ---
Source: python-xarray
Source-Version: 2025.01.2-2
Done: Bastian Germann <b...@debian.org>

We believe that the bug you reported is fixed in the latest version of
python-xarray, which is due to be installed in the Debian FTP archive.

A summary of the changes between this version and the previous one is
attached.

Thank you for reporting the bug, which will now be closed.  If you
have further comments please address them to 1100...@bugs.debian.org,
and the maintainer will reopen the bug report if appropriate.

Debian distribution maintenance software
pp.
Bastian Germann <b...@debian.org> (supplier of updated python-xarray package)

(This message was generated automatically at their request; if you
believe that there is a problem with it please contact the archive
administrators by mailing ftpmas...@ftp-master.debian.org)


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

Format: 1.8
Date: Mon, 24 Mar 2025 00:31:19 +0100
Source: python-xarray
Architecture: source
Version: 2025.01.2-2
Distribution: unstable
Urgency: medium
Maintainer: Debian Science Maintainers 
<debian-science-maintain...@lists.alioth.debian.org>
Changed-By: Bastian Germann <b...@debian.org>
Closes: 1053718 1100293
Changes:
 python-xarray (2025.01.2-2) unstable; urgency=medium
 .
   * Team upload.
   * Upstream release 2025.01.2. Closes: #1100293
 .
   [ Michael R. Crusoe ]
   * Switch to PEP-517 building and testing with pybuild. Closes: #1053718
   * refresh patches
   * d/rules: only skip known failing tests, not allowing all tests to fail.
   * Run the tests in parallel using pytest-xdist; report skipped tests.
 .
   [ Alastair McKinstry ]
   * Update metadata
Checksums-Sha1:
 e8bd546111054e5b9506dae99f12c49f152d4ec3 3672 python-xarray_2025.01.2-2.dsc
 7e39262a3e7415d2e78ebd699225dd50578ff226 3260921 
python-xarray_2025.01.2.orig.tar.gz
 d0dea3b3b8a6988214053f5fe84f9a20d12bf6f8 16524 
python-xarray_2025.01.2-2.debian.tar.xz
 e15cf20fe515fb59996b3849cca35281785d8968 6630 
python-xarray_2025.01.2-2_source.buildinfo
Checksums-Sha256:
 2330d23b21bbe456c320d7e49b4d846d5af0a4fd1bbcb99187d1da8f6848afa3 3672 
python-xarray_2025.01.2-2.dsc
 e9c06c7d2c34ca9e8d73972a11aefe56b8ff7f94edb087c4c8989f9848421982 3260921 
python-xarray_2025.01.2.orig.tar.gz
 ab26483099d3658c981d16772e1b7818987f784ecf6605e2cee8c19b3d370f5f 16524 
python-xarray_2025.01.2-2.debian.tar.xz
 10623004c10b752bce268163815b4adc6be1f8da7555d1d396bef5bb507905c3 6630 
python-xarray_2025.01.2-2_source.buildinfo
Files:
 1144c2b6e67b90acab32de9df3b9fa3e 3672 python optional 
python-xarray_2025.01.2-2.dsc
 d1ac959ac3f882e435006c8677169d9f 3260921 python optional 
python-xarray_2025.01.2.orig.tar.gz
 753ac184ca5bdae1fe62d1c842cbfa3f 16524 python optional 
python-xarray_2025.01.2-2.debian.tar.xz
 1ea9a39cd7a6f2d4daa07967c5244554 6630 python optional 
python-xarray_2025.01.2-2_source.buildinfo

-----BEGIN PGP SIGNATURE-----

iQHEBAEBCgAuFiEEQGIgyLhVKAI3jM5BH1x6i0VWQxQFAmfgmzwQHGJhZ2VAZGVi
aWFuLm9yZwAKCRAfXHqLRVZDFJ+7DADtcgL06ZXD0mb41SRe/U1lQOvf8JuDIio9
cHQ3jSm4DYnCAcBqGg3MpNTZ19iBPiLi9nt5/Y4k00tu6F8h/jTWyo8d4J+wnRF1
mOByGJLf+cISP3Xwce7DyEqgUDhri2ZLnbAy6pAaCfheUgZIen9Fjoy+h6WWb5yU
sYVqtf+zqV2zvasFT1qKl4MIZRxiLqMPTGhHu4zJsUrGK+xik7t3HDAgbJEWCcG8
VeHoISk/VUCfM4hK5QFHUFybgFlndPorG5Ph8lzv9L2fZTpPDtfjoZVcq5m1dATP
XOGJU3GLnbng9MBrM2MrOdISARAkIjiBXbx312hlSjlueXCaFw51XK5Uj7NDShqt
yQg930EybHhWoMt3X4MswMnZUJUGbwgQA/4lGTWRFss4cSf3bVTYWnBnpnZx0Vg+
hm+dzdu0fGukAI1S1WVR0RpSPh29+CFBE1J6B6/7lL9OAkjJ8qAnQKzMmJx+toB3
fXKd9TDjIuNPFW9D4zJaNvU6HVDHnhY=
=H+v6
-----END PGP SIGNATURE-----

Attachment: pgpLBi44D8Qvd.pgp
Description: PGP signature


--- End Message ---

Reply via email to