Your message dated Tue, 06 Sep 2022 12:49:49 +0000
with message-id <e1ovy1v-00ecpk...@fasolo.debian.org>
and subject line Bug#1004870: fixed in python-xarray 2022.06.0-6
has caused the Debian Bug report #1004870,
regarding python-xarray: autopkgtest regression on s390x
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
1004870: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1004870
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Source: python-xarray
Version: 0.21.0-1
X-Debbugs-CC: debian...@lists.debian.org, debian-s...@lists.debian.org
Severity: serious
User: debian...@lists.debian.org
Usertags: regression

Hi Maintainer

python-xarray's autopkgtests are failing on the big-endian s390x
architecture [1].
I've copied what I hope is the relevant part of the log below.

Regards
Graham


[1] https://ci.debian.net/packages/p/python-xarray/unstable/s390x/


=================================== FAILURES ===================================
_______________________ test_calendar_cftime_2D[365_day] _______________________

data = <xarray.DataArray 'data' (lon: 10, lat: 10, time: 100)>
array([[[0.25602205, 0.47375523, 0.88418655, ..., 0.19579452,
...0.0 2.222 4.444 6.667 ... 13.33 15.56 17.78 20.0
  * time     (time) object 2000-01-01 00:00:00 ... 2000-01-05 03:00:00

    @requires_cftime
    def test_calendar_cftime_2D(data) -> None:
        # 2D np datetime:
>       data = xr.DataArray(
            np.random.randint(1, 1000000, size=(4,
5)).astype("<M8[h]"), dims=("x", "y")
        )

/usr/lib/python3/dist-packages/xarray/tests/test_accessor_dt.py:426:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:400: in __init__
    data = as_compatible_data(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:232: in
as_compatible_data
    data = _possibly_convert_objects(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:176: in
_possibly_convert_objects
    return np.asarray(pd.Series(values.ravel())).reshape(values.shape)
/usr/lib/python3/dist-packages/pandas/core/series.py:439: in __init__
    data = sanitize_array(data, index, dtype, copy)
/usr/lib/python3/dist-packages/pandas/core/construction.py:545: in
sanitize_array
    subarr = _try_cast(data, dtype, copy, raise_cast_failure)
/usr/lib/python3/dist-packages/pandas/core/construction.py:704: in _try_cast
    return sanitize_to_nanoseconds(arr, copy=copy)
/usr/lib/python3/dist-packages/pandas/core/dtypes/cast.py:1740: in
sanitize_to_nanoseconds
    values = conversion.ensure_datetime64ns(values)
pandas/_libs/tslibs/conversion.pyx:256: in
pandas._libs.tslibs.conversion.ensure_datetime64ns
    ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

>   ???
E   pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds
nanosecond timestamp: -259805407763208-03-07 00:00:00

pandas/_libs/tslibs/np_datetime.pyx:120: OutOfBoundsDatetime
_______________________ test_calendar_cftime_2D[360_day] _______________________

data = <xarray.DataArray 'data' (lon: 10, lat: 10, time: 100)>
array([[[0.3348676 , 0.8813548 , 0.07158625, ..., 0.12469613,
...0.0 2.222 4.444 6.667 ... 13.33 15.56 17.78 20.0
  * time     (time) object 2000-01-01 00:00:00 ... 2000-01-05 03:00:00

    @requires_cftime
    def test_calendar_cftime_2D(data) -> None:
        # 2D np datetime:
>       data = xr.DataArray(
            np.random.randint(1, 1000000, size=(4,
5)).astype("<M8[h]"), dims=("x", "y")
        )

/usr/lib/python3/dist-packages/xarray/tests/test_accessor_dt.py:426:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:400: in __init__
    data = as_compatible_data(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:232: in
as_compatible_data
    data = _possibly_convert_objects(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:176: in
_possibly_convert_objects
    return np.asarray(pd.Series(values.ravel())).reshape(values.shape)
/usr/lib/python3/dist-packages/pandas/core/series.py:439: in __init__
    data = sanitize_array(data, index, dtype, copy)
/usr/lib/python3/dist-packages/pandas/core/construction.py:545: in
sanitize_array
    subarr = _try_cast(data, dtype, copy, raise_cast_failure)
/usr/lib/python3/dist-packages/pandas/core/construction.py:704: in _try_cast
    return sanitize_to_nanoseconds(arr, copy=copy)
/usr/lib/python3/dist-packages/pandas/core/dtypes/cast.py:1740: in
sanitize_to_nanoseconds
    values = conversion.ensure_datetime64ns(values)
pandas/_libs/tslibs/conversion.pyx:256: in
pandas._libs.tslibs.conversion.ensure_datetime64ns
    ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

>   ???
E   pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds
nanosecond timestamp: 768533895196513-09-16 16:00:00

pandas/_libs/tslibs/np_datetime.pyx:120: OutOfBoundsDatetime
_______________________ test_calendar_cftime_2D[julian] ________________________

data = <xarray.DataArray 'data' (lon: 10, lat: 10, time: 100)>
array([[[0.05513783, 0.72362925, 0.78967474, ..., 0.8560986 ,
...0.0 2.222 4.444 6.667 ... 13.33 15.56 17.78 20.0
  * time     (time) object 2000-01-01 00:00:00 ... 2000-01-05 03:00:00

    @requires_cftime
    def test_calendar_cftime_2D(data) -> None:
        # 2D np datetime:
>       data = xr.DataArray(
            np.random.randint(1, 1000000, size=(4,
5)).astype("<M8[h]"), dims=("x", "y")
        )

/usr/lib/python3/dist-packages/xarray/tests/test_accessor_dt.py:426:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:400: in __init__
    data = as_compatible_data(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:232: in
as_compatible_data
    data = _possibly_convert_objects(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:176: in
_possibly_convert_objects
    return np.asarray(pd.Series(values.ravel())).reshape(values.shape)
/usr/lib/python3/dist-packages/pandas/core/series.py:439: in __init__
    data = sanitize_array(data, index, dtype, copy)
/usr/lib/python3/dist-packages/pandas/core/construction.py:545: in
sanitize_array
    subarr = _try_cast(data, dtype, copy, raise_cast_failure)
/usr/lib/python3/dist-packages/pandas/core/construction.py:704: in _try_cast
    return sanitize_to_nanoseconds(arr, copy=copy)
/usr/lib/python3/dist-packages/pandas/core/dtypes/cast.py:1740: in
sanitize_to_nanoseconds
    values = conversion.ensure_datetime64ns(values)
pandas/_libs/tslibs/conversion.pyx:256: in
pandas._libs.tslibs.conversion.ensure_datetime64ns
    ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

>   ???
E   pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds
nanosecond timestamp: 904522921033531-11-08 08:00:00

pandas/_libs/tslibs/np_datetime.pyx:120: OutOfBoundsDatetime
______________________ test_calendar_cftime_2D[all_leap] _______________________

data = <xarray.DataArray 'data' (lon: 10, lat: 10, time: 100)>
array([[[0.02927022, 0.10328084, 0.12428704, ..., 0.83960594,
...0.0 2.222 4.444 6.667 ... 13.33 15.56 17.78 20.0
  * time     (time) object 2000-01-01 00:00:00 ... 2000-01-05 03:00:00

    @requires_cftime
    def test_calendar_cftime_2D(data) -> None:
        # 2D np datetime:
>       data = xr.DataArray(
            np.random.randint(1, 1000000, size=(4,
5)).astype("<M8[h]"), dims=("x", "y")
        )

/usr/lib/python3/dist-packages/xarray/tests/test_accessor_dt.py:426:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:400: in __init__
    data = as_compatible_data(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:232: in
as_compatible_data
    data = _possibly_convert_objects(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:176: in
_possibly_convert_objects
    return np.asarray(pd.Series(values.ravel())).reshape(values.shape)
/usr/lib/python3/dist-packages/pandas/core/series.py:439: in __init__
    data = sanitize_array(data, index, dtype, copy)
/usr/lib/python3/dist-packages/pandas/core/construction.py:545: in
sanitize_array
    subarr = _try_cast(data, dtype, copy, raise_cast_failure)
/usr/lib/python3/dist-packages/pandas/core/construction.py:704: in _try_cast
    return sanitize_to_nanoseconds(arr, copy=copy)
/usr/lib/python3/dist-packages/pandas/core/dtypes/cast.py:1740: in
sanitize_to_nanoseconds
    values = conversion.ensure_datetime64ns(values)
pandas/_libs/tslibs/conversion.pyx:256: in
pandas._libs.tslibs.conversion.ensure_datetime64ns
    ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

>   ???
E   pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds
nanosecond timestamp: -77577995854656-10-03 16:00:00

pandas/_libs/tslibs/np_datetime.pyx:120: OutOfBoundsDatetime
_______________________ test_calendar_cftime_2D[366_day] _______________________

data = <xarray.DataArray 'data' (lon: 10, lat: 10, time: 100)>
array([[[0.32570151, 0.71143133, 0.43459037, ..., 0.14784034,
...0.0 2.222 4.444 6.667 ... 13.33 15.56 17.78 20.0
  * time     (time) object 2000-01-01 00:00:00 ... 2000-01-05 03:00:00

    @requires_cftime
    def test_calendar_cftime_2D(data) -> None:
        # 2D np datetime:
>       data = xr.DataArray(
            np.random.randint(1, 1000000, size=(4,
5)).astype("<M8[h]"), dims=("x", "y")
        )

/usr/lib/python3/dist-packages/xarray/tests/test_accessor_dt.py:426:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:400: in __init__
    data = as_compatible_data(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:232: in
as_compatible_data
    data = _possibly_convert_objects(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:176: in
_possibly_convert_objects
    return np.asarray(pd.Series(values.ravel())).reshape(values.shape)
/usr/lib/python3/dist-packages/pandas/core/series.py:439: in __init__
    data = sanitize_array(data, index, dtype, copy)
/usr/lib/python3/dist-packages/pandas/core/construction.py:545: in
sanitize_array
    subarr = _try_cast(data, dtype, copy, raise_cast_failure)
/usr/lib/python3/dist-packages/pandas/core/construction.py:704: in _try_cast
    return sanitize_to_nanoseconds(arr, copy=copy)
/usr/lib/python3/dist-packages/pandas/core/dtypes/cast.py:1740: in
sanitize_to_nanoseconds
    values = conversion.ensure_datetime64ns(values)
pandas/_libs/tslibs/conversion.pyx:256: in
pandas._libs.tslibs.conversion.ensure_datetime64ns
    ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

>   ???
E   pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds
nanosecond timestamp: 391106800438843-10-05 00:00:00

pandas/_libs/tslibs/np_datetime.pyx:120: OutOfBoundsDatetime
______________________ test_calendar_cftime_2D[gregorian] ______________________

data = <xarray.DataArray 'data' (lon: 10, lat: 10, time: 100)>
array([[[0.91161183, 0.42436822, 0.53522578, ..., 0.36468928,
...0.0 2.222 4.444 6.667 ... 13.33 15.56 17.78 20.0
  * time     (time) object 2000-01-01 00:00:00 ... 2000-01-05 03:00:00

    @requires_cftime
    def test_calendar_cftime_2D(data) -> None:
        # 2D np datetime:
>       data = xr.DataArray(
            np.random.randint(1, 1000000, size=(4,
5)).astype("<M8[h]"), dims=("x", "y")
        )

/usr/lib/python3/dist-packages/xarray/tests/test_accessor_dt.py:426:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:400: in __init__
    data = as_compatible_data(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:232: in
as_compatible_data
    data = _possibly_convert_objects(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:176: in
_possibly_convert_objects
    return np.asarray(pd.Series(values.ravel())).reshape(values.shape)
/usr/lib/python3/dist-packages/pandas/core/series.py:439: in __init__
    data = sanitize_array(data, index, dtype, copy)
/usr/lib/python3/dist-packages/pandas/core/construction.py:545: in
sanitize_array
    subarr = _try_cast(data, dtype, copy, raise_cast_failure)
/usr/lib/python3/dist-packages/pandas/core/construction.py:704: in _try_cast
    return sanitize_to_nanoseconds(arr, copy=copy)
/usr/lib/python3/dist-packages/pandas/core/dtypes/cast.py:1740: in
sanitize_to_nanoseconds
    values = conversion.ensure_datetime64ns(values)
pandas/_libs/tslibs/conversion.pyx:256: in
pandas._libs.tslibs.conversion.ensure_datetime64ns
    ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

>   ???
E   pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds
nanosecond timestamp: -690921531052547-07-02 08:00:00

pandas/_libs/tslibs/np_datetime.pyx:120: OutOfBoundsDatetime
_________________ test_calendar_cftime_2D[proleptic_gregorian] _________________

data = <xarray.DataArray 'data' (lon: 10, lat: 10, time: 100)>
array([[[8.84930980e-01, 9.76547499e-01, 4.34131057e-01, ...,
...0.0 2.222 4.444 6.667 ... 13.33 15.56 17.78 20.0
  * time     (time) object 2000-01-01 00:00:00 ... 2000-01-05 03:00:00

    @requires_cftime
    def test_calendar_cftime_2D(data) -> None:
        # 2D np datetime:
>       data = xr.DataArray(
            np.random.randint(1, 1000000, size=(4,
5)).astype("<M8[h]"), dims=("x", "y")
        )

/usr/lib/python3/dist-packages/xarray/tests/test_accessor_dt.py:426:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:400: in __init__
    data = as_compatible_data(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:232: in
as_compatible_data
    data = _possibly_convert_objects(data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:176: in
_possibly_convert_objects
    return np.asarray(pd.Series(values.ravel())).reshape(values.shape)
/usr/lib/python3/dist-packages/pandas/core/series.py:439: in __init__
    data = sanitize_array(data, index, dtype, copy)
/usr/lib/python3/dist-packages/pandas/core/construction.py:545: in
sanitize_array
    subarr = _try_cast(data, dtype, copy, raise_cast_failure)
/usr/lib/python3/dist-packages/pandas/core/construction.py:704: in _try_cast
    return sanitize_to_nanoseconds(arr, copy=copy)
/usr/lib/python3/dist-packages/pandas/core/dtypes/cast.py:1740: in
sanitize_to_nanoseconds
    values = conversion.ensure_datetime64ns(values)
pandas/_libs/tslibs/conversion.pyx:256: in
pandas._libs.tslibs.conversion.ensure_datetime64ns
    ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

>   ???
E   pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds
nanosecond timestamp: -67784665697082-12-03 00:00:00

pandas/_libs/tslibs/np_datetime.pyx:120: OutOfBoundsDatetime

--- End Message ---
--- Begin Message ---
Source: python-xarray
Source-Version: 2022.06.0-6
Done: Alastair McKinstry <mckins...@debian.org>

We believe that the bug you reported is fixed in the latest version of
python-xarray, which is due to be installed in the Debian FTP archive.

A summary of the changes between this version and the previous one is
attached.

Thank you for reporting the bug, which will now be closed.  If you
have further comments please address them to 1004...@bugs.debian.org,
and the maintainer will reopen the bug report if appropriate.

Debian distribution maintenance software
pp.
Alastair McKinstry <mckins...@debian.org> (supplier of updated python-xarray 
package)

(This message was generated automatically at their request; if you
believe that there is a problem with it please contact the archive
administrators by mailing ftpmas...@ftp-master.debian.org)


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA256

Format: 1.8
Date: Tue, 06 Sep 2022 13:29:36 +0100
Source: python-xarray
Architecture: source
Version: 2022.06.0-6
Distribution: unstable
Urgency: medium
Maintainer: Debian Science Maintainers 
<debian-science-maintain...@lists.alioth.debian.org>
Changed-By: Alastair McKinstry <mckins...@debian.org>
Closes: 1004870
Changes:
 python-xarray (2022.06.0-6) unstable; urgency=medium
 .
   * Patch for cftime test failure on s390x. Closes: #1004870
Checksums-Sha1:
 11d6c8e648c1295a9ae22c58410c30ad8fa684e6 3345 python-xarray_2022.06.0-6.dsc
 94eefc1ebf6c915390e96a761e3ac43782a4fd1a 14512 
python-xarray_2022.06.0-6.debian.tar.xz
Checksums-Sha256:
 a66b4e7777f5b943448a367e21008ddc811114de9fbc7e88548b82152312e1de 3345 
python-xarray_2022.06.0-6.dsc
 8c0236cdd34849ce49db0065fba33fd15e5903a9101eec2955aff3694db967ad 14512 
python-xarray_2022.06.0-6.debian.tar.xz
Files:
 67d16fdb91a2221c5561529f76caef0c 3345 python optional 
python-xarray_2022.06.0-6.dsc
 0df32ad5862eddfe02448d8cddd93d48 14512 python optional 
python-xarray_2022.06.0-6.debian.tar.xz

-----BEGIN PGP SIGNATURE-----

iQIzBAEBCAAdFiEEgjg86RZbNHx4cIGiy+a7Tl2a06UFAmMXP5QACgkQy+a7Tl2a
06WqkBAApqQz7UIAUETgkSb4XUanqistGq0CZPQ8akE88VM49+KainYOEg/PZnxy
75un4kc2RIYctMdgDLwLxoF5OPos+hFA3akr9pEOuWh/mVRwFUV6cQ6HodBN4G5d
d+eEDbkzGa0J0rl1bHvTMKnU8QE2Bvnrrjg10IQe/iTfA8fFS0a0Q88Ug646CnIi
MuEnnEZvGFnTuhhTRDScr6uj3Hjxu52D1JRapEvuyKlbXph6+EBkmVjmhuUTFuL6
a4sgTkMgrHcJSETLd6S3Lcg23tZ5KqxmT2dWXm0h34Tx6FbszI5AJgNu1jrPpmzh
WuQAxHPxOYD06T/H5Szjb3i31oZqmic3RryYHcrBjckyIJZZ5LcJWwBInbxvCx8s
o+nQRKW01NPrXvgErwwRJM+s+t4DyZCsomf5b5cpr4QkOLUmCCmem/UW5myuq+FS
8cZ1u2Et/OTlpD7Dodiiiyg8kSA0Kyal7JoanHY81VBZaDmCkWZGwnGGy+8dphbQ
FjnZtb2dwcm6cT2bhv4FmWq9XDxiTZTi2guEQx3+6HlgBQPdBSLIAdk3Gm0kzZaN
Nc3Spjuzm2LVQXWJOrMMh4s4WYDd0YJqa+VjgA7b9lu468LN3YDstopO7zMvVHom
rgyq1lc+tgRvpw/HHv5YlGiR8Cj0C4DzB29kBwSNlyIHBpZ4uvw=
=AfT8
-----END PGP SIGNATURE-----

--- End Message ---

Reply via email to