Source: statsmodels Version: 0.14.2+dfsg-1 Severity: normal Control: forwarded -1 https://github.com/statsmodels/statsmodels/issues/7866
statsmodels is failing tests on arm64 with scipy 1.14 (from experimental) 1504s ______________ TestZeroInflatedModel_probit.test_fit_regularized _______________ 1504s 1504s self = <statsmodels.discrete.tests.test_count_model.TestZeroInflatedModel_probit object at 0xffff91ad24e0> 1504s 1504s @pytest.mark.skipif(PLATFORM_LINUX32, reason="Fails on 32-bit Linux") 1504s def test_fit_regularized(self): 1504s > super().test_fit_regularized() 1504s 1504s /usr/lib/python3/dist-packages/statsmodels/discrete/tests/test_count_model.py:114: 1504s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1504s /usr/lib/python3/dist-packages/statsmodels/discrete/tests/test_count_model.py:50: in test_fit_regularized 1504s assert_allclose(res_reg.params[2:], self.res1.params[2:], 1504s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1504s 1504s args = (<function assert_allclose.<locals>.compare at 0xffff8c1b8540>, array([ 0. , 0. , -0.02679517, 1.48236838]), array([-0.08217884, 0.00856726, -0.02679518, 1.48236911])) 1504s kwds = {'equal_nan': True, 'err_msg': '', 'header': 'Not equal to tolerance rtol=0.05, atol=0.05', 'verbose': True} 1504s 1504s @wraps(func) 1504s def inner(*args, **kwds): 1504s with self._recreate_cm(): 1504s > return func(*args, **kwds) 1504s E AssertionError: 1504s E Not equal to tolerance rtol=0.05, atol=0.05 1504s E 1504s E Mismatched elements: 1 / 4 (25%) 1504s E Max absolute difference: 0.08217884 1504s E Max relative difference: 1. 1504s E x: array([ 0. , 0. , -0.026795, 1.482368]) 1504s E y: array([-0.082179, 0.008567, -0.026795, 1.482369]) 1504s 1504s /usr/lib/python3.12/contextlib.py:81: AssertionError Full test log at https://ci.debian.net/packages/s/statsmodels/unstable/arm64/51043990/ The problem was previously acknowledged upstream at https://github.com/statsmodels/statsmodels/issues/7866 where the recommendation was "The zeroinflated test can be skipped, fit_regularized for ZI model is inherited, and I never checked how robust optimization is in those cases. Starting values for optimization are not very good yet."