This patch allows the package to build with GCC 6.
Index: mldemos-0.5.1/Core/glwidget.h
===================================================================
--- mldemos-0.5.1.orig/Core/glwidget.h
+++ mldemos-0.5.1/Core/glwidget.h
@@ -114,9 +114,9 @@ public:
 
     static const GLint texWidth = 128;
     static const GLint texHeight = 128;
-    static const float texHalfWidth = 64.0f;
-    static const float texHalfHeight = 64.0f;
-    static const float texRadius = texWidth*0.9;
+    static constexpr float texHalfWidth = 64.0f;
+    static constexpr float texHalfHeight = 64.0f;
+    static constexpr float texRadius = texWidth*0.9;
     static const int textureCount = 2; // 0: samples, 1: wide circle
     static GLuint *textureNames;
     static unsigned char **textureData;
Index: mldemos-0.5.1/Core/basicMath.h
===================================================================
--- mldemos-0.5.1.orig/Core/basicMath.h
+++ mldemos-0.5.1/Core/basicMath.h
@@ -129,6 +129,7 @@ static u32 *randPerm(u32 length, s32 see
 // matlab code to generate the table
 // erf(x) = (x>0?1:-1) * erftable((int)(min(6.f,abs(x))*100));
 // 0:0.01:6
+#if __cplusplus < 201103L
 static const float erftable [] = 
 {
     0.0000000000000000f, 0.0112834155558496f, 0.0225645746918449f, 0.0338412223417354f, 0.0451111061451247f, 0.0563719777970166f, 0.0676215943933084f, 0.0788577197708907f, 0.0900781258410182f, 0.1012805939146269f, 0.1124629160182849f, 0.1236228961994743f, 0.1347583518199201f, 0.1458671148356958f, 0.1569470330628558f, 0.1679959714273635f, 0.1790118131981057f, 0.1899924612018088f, 0.2009358390186958f, 0.2118398921577497f, 0.2227025892104785f, 0.2335219229821036f, 0.2442959115991287f, 0.2550225995922731f, 0.2657000589537920f, 0.2763263901682369f, 0.2868997232157491f, 0.2974182185470128f, 0.3078800680290340f, 0.3182834958609522f, 0.3286267594591273f, 0.3389081503107902f, 0.3491259947955827f, 0.3592786549743590f, 0.3693645293446587f, 0.3793820535623103f, 0.3893297011286642f, 0.3992059840429992f, 0.4090094534196940f, 0.4187387000697961f, 0.4283923550466685f, 0.4379690901554394f, 0.4474676184260253f, 0.4568866945495403f, 0.4662251152779575f, 0.4754817197869237f, 0.4846553900016797f, 0.4937450508860821f, 0.5027496706947650f, 0.5116682611885233f, 0.5204998778130465f, 0.5292436198411704f, 0.5378986304788544f, 0.5464640969351416f, 0.5549392504563904f, 0.5633233663251089f, 0.5716157638237684f, 0.5798158061639961f, 0.5879229003816007f, 0.5959364971979084f, 0.6038560908479259f, 0.6116812188758802f, 0.6194114618987212f, 0.6270464433381957f, 0.6345858291221413f, 0.6420293273556719f, 0.6493766879629542f, 0.6566277023003051f, 0.6637822027413580f, 0.6708400622350779f, 0.6778011938374186f, 0.6846655502174442f, 0.6914331231387512f, 0.6981039429170445f, 0.7046780778547458f, 0.7111556336535152f, 0.7175367528055909f, 0.7238216139648592f, 0.7300104312985789f, 0.7361034538206912f, 0.7421009647076605f, 0.7480032805977895f, 0.7538107508749625f, 0.7595237569377731f, 0.7651427114549946f, 0.7706680576083524f, 0.7761002683235567f, 0.7814398454905507f, 0.7866873191739325f, 0.7918432468144954f, 0.7969082124228322f, 0.8018828257659413f, 0.8067677215477618f, 0.8115635585845578f, 0.8162710189760625f, 0.8208908072732779f, 0.8254236496438183f, 0.8298702930356671f, 0.8342315043402079f, 0.8385080695553697f, 0.8427007929497148f, 0.8468104962282766f, 0.8508380177009420f, 0.8547842114541484f, 0.8586499465266515f, 0.8624361060900967f, 0.8661435866351080f, 0.8697732971635868f, 0.8733261583878896f, 0.8768031019375383f, 0.8802050695740817f, 0.8835330124147180f, 0.8867878901652547f, 0.8899706703629624f, 0.8930823276298567f, 0.8961238429369151f, 0.8990962028797120f, 0.9020003989659357f, 0.9048374269152169f, 0.9076082859716850f, 0.9103139782296355f, 0.9129555079726694f, 0.9155338810266469f, 0.9180501041267614f, 0.9205051842990297f, 0.9229001282564582f, 0.9252359418101295f, 0.9275136292954247f, 0.9297341930135782f, 0.9318986326887336f, 0.9340079449406524f, 0.9360631227731995f, 0.9380651550787114f, 0.9400150261583302f, 0.9419137152583653f, 0.9437621961227241f, 0.9455614365614331f, 0.9473123980352520f, 0.9490160352563626f, 0.9506732958050965f, 0.9522851197626489f, 0.9538524393597054f, 0.9553761786408961f, 0.9568572531449688f, 0.9582965696005648f, 0.9596950256374592f, 0.9610535095131181f, 0.9623728998544057f, 0.9636540654142689f, 0.9648978648432043f, 0.9661051464753108f, 0.9672767481287117f, 0.9684134969201232f, 0.9695162090933357f, 0.9705856898613637f, 0.9716227332620125f, 0.9726281220266002f, 0.9736026274615670f, 0.9745470093426969f, 0.9754620158216676f, 0.9763483833446440f, 0.9772068365826185f, 0.9780380883732035f, 0.9788428396735702f, 0.9796217795242320f, 0.9803755850233603f, 0.9811049213113221f, 0.9818104415651265f, 0.9824927870024649f, 0.9831525868950262f, 0.9837904585907746f, 0.9844070075448683f, 0.9850028273589058f, 0.9855784998281805f, 0.9861345949966329f, 0.9866716712191824f, 0.9871902752311301f, 0.9876909422243223f, 0.9881741959297683f, 0.9886405487064082f, 0.9890905016357308f, 0.9895245446219444f, 0.9899431564974077f, 0.9903468051330306f, 0.9907359475533626f, 0.9911110300560857f, 0.9914724883356396f, 0.9918207476107068f, 0.9921562227552937f, 0.9924793184331480f, 0.9927904292352574f, 0.9930899398201836f, 0.9933782250569847f, 0.9936556501704964f, 0.9939225708887325f, 0.9941793335921891f, 0.9944262754648279f, 0.9946637246465300f, 0.9948920003868136f, 0.9951114131996171f, 0.9953222650189527f, 0.9955248493552482f, 0.9957194514521921f, 0.9959063484439121f, 0.9960858095123195f, 0.9962580960444569f, 0.9964234617896959f, 0.9965821530166383f, 0.9967344086695764f, 0.9968804605243777f, 0.9970205333436670f, 0.9971548450311778f, 0.9972836067851606f, 0.9974070232507333f, 0.9975252926710697f, 0.9976386070373253f, 0.9977471522372077f, 0.9978511082021002f, 0.9979506490526588f, 0.9980459432428015f, 0.9981371537020181f, 0.9982244379759344f, 0.9983079483650648f, 0.9983878320616981f, 0.9984642312848625f, 0.9985372834133188f, 0.9986071211165417f, 0.9986738724836455f, 0.9987376611502190f, 0.9987986064230412f, 0.9988568234026434f, 0.9989124231037001f, 0.9989655125732240f, 0.9990161950065498f, 0.9990645698610920f, 0.9991107329678676f, 0.9991547766407751f, 0.9991967897836264f, 0.9992368579949287f, 0.9992750636704192f, 0.9993114861033550f, 0.9993462015825647f, 0.9993792834882711f, 0.9994108023856942f, 0.9994408261164486f, 0.9994694198877490f, 0.9994966463594419f, 0.9995225657288811f, 0.9995472358136659f, 0.9995707121322661f, 0.9995930479825550f, 0.9996142945182758f, 0.9996345008234653f, 0.9996537139848649f, 0.9996719791623431f, 0.9996893396573607f, 0.9997058369795080f, 0.9997215109111428f, 0.9997363995701628f, 0.9997505394709432f, 0.9997639655834707f, 0.9997767113907082f, 0.9997888089442237f, 0.9998002889181156f, 0.9998111806612684f, 0.9998215122479760f, 0.9998313105269614f, 0.9998406011688324f, 0.9998494087120056f, 0.9998577566071316f, 0.9998656672600594f, 0.9998731620733716f, 0.9998802614865254f, 0.9998869850146334f, 0.9998933512859194f, 0.9998993780778804f, 0.9999050823521898f, 0.9999104802883753f, 0.9999155873163016f, 0.9999204181474947f, 0.9999249868053346f, 0.9999293066541523f, 0.9999333904272598f, 0.9999372502539452f, 0.9999408976854610f, 0.9999443437200386f, 0.9999475988269556f, 0.9999506729696857f, 0.9999535756281590f, 0.9999563158201617f, 0.9999589021219005f, 0.9999613426877595f, 0.9999636452692755f, 0.9999658172333573f, 0.9999678655797740f, 0.9999697969579359f, 0.9999716176829931f, 0.9999733337512747f, 0.9999749508550908f, 0.9999764743969193f, 0.9999779095030015f, 0.9999792610363629f, 0.9999805336092855f, 0.9999817315952467f, 0.9999828591403461f, 0.9999839201742398f, 0.9999849184206001f, 0.9999858574071167f, 0.9999867404750594f, 0.9999875707884177f, 0.9999883513426329f, 0.9999890849729398f, 0.9999897743623336f, 0.9999904220491747f, 0.9999910304344468f, 0.9999916017886847f, 0.9999921382585810f, 0.9999926418732865f, 0.9999931145504183f, 0.9999935581017863f, 0.9999939742388482f, 0.9999943645779092f, 0.9999947306450711f, 0.9999950738809456f, 0.9999953956451422f, 0.9999956972205364f, 0.9999959798173321f, 0.9999962445769250f, 0.9999964925755764f, 0.9999967248279045f, 0.9999969422902035f, 0.9999971458635975f, 0.9999973363970345f, 0.9999975146901312f, 0.9999976814958739f, 0.9999978375231799f, 0.9999979834393308f, 0.9999981198722784f, 0.9999982474128331f, 0.9999983666167385f, 0.9999984780066371f, 0.9999985820739346f, 0.9999986792805644f, 0.9999987700606605f, 0.9999988548221410f, 0.9999989339482065f, 0.9999990077987595f, 0.9999990767117464f, 0.9999991410044279f, 0.9999992009745795f, 0.9999992569016276f, 0.9999993090477226f, 0.9999993576587528f, 0.9999994029653040f, 0.9999994451835634f, 0.9999994845161754f, 0.9999995211530479f, 0.9999995552721144f, 0.9999995870400529f, 0.9999996166129631f, 0.9999996441370069f, 0.9999996697490110f, 0.9999996935770344f, 0.9999997157409060f, 0.9999997363527273f, 0.9999997555173494f, 0.9999997733328196f, 0.9999997898908039f, 0.9999998052769828f, 0.9999998195714259f, 0.9999998328489421f, 0.9999998451794108f, 0.9999998566280922f, 0.9999998672559198f, 0.9999998771197746f, 0.9999998862727435f, 0.9999998947643614f, 0.9999999026408388f, 0.9999999099452765f, 0.9999999167178646f, 0.9999999229960725f, 0.9999999288148247f, 0.9999999342066670f, 0.9999999392019217f, 0.9999999438288334f, 0.9999999481137065f, 0.9999999520810322f, 0.9999999557536089f, 0.9999999591526549f, 0.9999999622979134f, 0.9999999652077514f, 0.9999999678992515f, 0.9999999703882987f, 0.9999999726896611f, 0.9999999748170654f, 0.9999999767832677f, 0.9999999786001196f, 0.9999999802786297f, 0.9999999818290218f, 0.9999999832607887f, 0.9999999845827421f, 0.9999999858030606f, 0.9999999869293328f, 0.9999999879685986f, 0.9999999889273877f, 0.9999999898117551f, 0.9999999906273142f, 0.9999999913792682f, 0.9999999920724392f, 0.9999999927112944f, 0.9999999932999724f, 0.9999999938423057f, 0.9999999943418427f, 0.9999999948018690f, 0.9999999952254246f, 0.9999999956153229f, 0.9999999959741669f, 0.9999999963043638f, 0.9999999966081397f, 0.9999999968875528f, 0.9999999971445058f, 0.9999999973807567f, 0.9999999975979301f, 0.9999999977975265f, 0.9999999979809319f, 0.9999999981494259f, 0.9999999983041898f, 0.9999999984463144f, 0.9999999985768053f, 0.9999999986965913f, 0.9999999988065282f, 0.9999999989074059f, 0.9999999989999523f, 0.9999999990848385f, 0.9999999991626829f, 0.9999999992340556f, 0.9999999992994814f, 0.9999999993594437f, 0.9999999994143880f, 0.9999999994647240f, 0.9999999995108290f, 0.9999999995530502f, 0.9999999995917070f, 0.9999999996270934f, 0.9999999996594795f, 0.9999999996891137f, 0.9999999997162244f, 0.9999999997410216f, 0.9999999997636982f, 0.9999999997844314f, 0.9999999998033839f, 0.9999999998207052f, 0.9999999998365327f, 0.9999999998509920f, 0.9999999998641989f, 0.9999999998762595f, 0.9999999998872711f, 0.9999999998973228f, 0.9999999999064966f, 0.9999999999148674f, 0.9999999999225040f, 0.9999999999294694f, 0.9999999999358213f, 0.9999999999416126f, 0.9999999999468917f, 0.9999999999517030f, 0.9999999999560869f, 0.9999999999600808f, 0.9999999999637186f, 0.9999999999670313f, 0.9999999999700474f, 0.9999999999727929f, 0.9999999999752915f, 0.9999999999775653f, 0.9999999999796336f, 0.9999999999815150f, 0.9999999999832258f, 0.9999999999847813f, 0.9999999999861953f, 0.9999999999874802f, 0.9999999999886479f, 0.9999999999897087f, 0.9999999999906721f, 0.9999999999915470f, 0.9999999999923415f, 0.9999999999930624f, 0.9999999999937168f, 0.9999999999943107f, 0.9999999999948495f, 0.9999999999953380f, 0.9999999999957810f, 0.9999999999961828f, 0.9999999999965470f, 0.9999999999968769f, 0.9999999999971760f, 0.9999999999974469f, 0.9999999999976923f, 0.9999999999979145f, 0.9999999999981156f, 0.9999999999982978f, 0.9999999999984626f, 0.9999999999986117f, 0.9999999999987466f, 0.9999999999988686f, 0.9999999999989789f, 0.9999999999990787f, 0.9999999999991689f, 0.9999999999992504f, 0.9999999999993240f, 0.9999999999993905f, 0.9999999999994507f, 0.9999999999995048f, 0.9999999999995539f, 0.9999999999995981f, 0.9999999999996381f, 0.9999999999996740f, 0.9999999999997065f, 0.9999999999997358f, 0.9999999999997622f, 0.9999999999997861f, 0.9999999999998075f, 0.9999999999998268f, 0.9999999999998444f, 0.9999999999998600f, 0.9999999999998741f, 0.9999999999998870f, 0.9999999999998983f, 0.9999999999999087f, 0.9999999999999181f, 0.9999999999999263f, 0.9999999999999338f, 0.9999999999999407f, 0.9999999999999467f, 0.9999999999999523f, 0.9999999999999572f, 0.9999999999999616f, 0.9999999999999655f, 0.9999999999999691f, 0.9999999999999722f, 0.9999999999999751f, 0.9999999999999778f, 0.9999999999999800f, 0.9999999999999821f, 0.9999999999999840f, 0.9999999999999857f, 0.9999999999999871f, 0.9999999999999885f, 0.9999999999999898f, 0.9999999999999908f, 0.9999999999999918f, 0.9999999999999927f, 0.9999999999999933f, 0.9999999999999941f, 0.9999999999999947f, 0.9999999999999953f, 0.9999999999999958f, 0.9999999999999962f, 0.9999999999999967f, 0.9999999999999970f, 0.9999999999999973f, 0.9999999999999976f, 0.9999999999999979f, 0.9999999999999981f, 0.9999999999999983f, 0.9999999999999985f, 0.9999999999999987f, 0.9999999999999988f, 0.9999999999999989f, 0.9999999999999991f, 0.9999999999999991f, 0.9999999999999992f, 0.9999999999999993f, 0.9999999999999993f, 0.9999999999999994f, 0.9999999999999996f, 0.9999999999999996f, 0.9999999999999996f, 0.9999999999999997f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999999f, 0.9999999999999999f, 0.9999999999999999f, 0.9999999999999999f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f
@@ -141,6 +142,7 @@ static float erf(const float x)
     if(x>0) return erftable[(int)(min(6.f,x)*100)];
     return -erftable[(int)(min(6.f,-x)*100)];
 }
+#endif
 
 enum distEnum {DIST_EUCLIDEAN, DIST_MANHATTAN, DIST_INFINITE} ;
 
Index: mldemos-0.5.1/_3rdParty/LAMP_HMM/hmmFind.cpp
===================================================================
--- mldemos-0.5.1.orig/_3rdParty/LAMP_HMM/hmmFind.cpp
+++ mldemos-0.5.1/_3rdParty/LAMP_HMM/hmmFind.cpp
@@ -117,7 +117,7 @@ int main (int argc, char *argv[])
     
     if (readHMMFile){
         hmmFile.open(hmmInputName);
-        if(hmmFile==NULL){
+        if(!hmmFile){
             cerr << "HMM file not found. Exiting..."<<endl;
             exit(-1);
         }
@@ -218,7 +218,7 @@ int main (int argc, char *argv[])
     
             CObsSeq *obsSeq;
             ifstream sequenceFile(sequenceName);
-            assert(sequenceFile != NULL);
+            assert(sequenceFile);
     //	obsSeq = learnedHMM->ReadSequences(sequenceFile);
             obsSeq = new CObsSeq(obsType, sequenceFile);
             sequenceFile.close();
Index: mldemos-0.5.1/_AlgorithmsPlugins/GP/SECovarianceFunction.cpp
===================================================================
--- mldemos-0.5.1.orig/_AlgorithmsPlugins/GP/SECovarianceFunction.cpp
+++ mldemos-0.5.1/_AlgorithmsPlugins/GP/SECovarianceFunction.cpp
@@ -4,7 +4,7 @@ void SECovarianceFunction::SetParams(int
     dim=d;
     sigma_n = sn;
     sigma_f = sf;
-    memcpy(lengthscales,l,dim*sizeof(SECOVFT));
+    lengthscales.assign(l, l + dim);
 }
 
 SECOVFT SECovarianceFunction::ComputeCovariance(const float *a, const float *b) const {
Index: mldemos-0.5.1/_AlgorithmsPlugins/GP/SECovarianceFunction.h
===================================================================
--- mldemos-0.5.1.orig/_AlgorithmsPlugins/GP/SECovarianceFunction.h
+++ mldemos-0.5.1/_AlgorithmsPlugins/GP/SECovarianceFunction.h
@@ -20,7 +20,7 @@ class SECovarianceFunction
 private:
     //SECOVFT * inData;
     int dim; //dimensionality of data
-    SECOVFT lengthscales[]; // float array containing the lengthscale for each dimension
+    std::vector<SECOVFT> lengthscales; // float vector containing the lengthscale for each dimension
     //SECOVFT * outData;
     SECOVFT sigma_n; // noise var
     SECOVFT sigma_f; //signal var
Index: mldemos-0.5.1/_IOPlugins/PCAFaces/basicMath.h
===================================================================
--- mldemos-0.5.1.orig/_IOPlugins/PCAFaces/basicMath.h
+++ mldemos-0.5.1/_IOPlugins/PCAFaces/basicMath.h
@@ -247,6 +247,7 @@ static u32 *randPerm(u32 length, s32 see
 // matlab code to generate the table
 // erf(x) = (x>0?1:-1) * erftable((int)(min(6,abs(x))*100));
 // 0:0.01:6
+#if __cplusplus < 201103L
 static const float erftable [] = 
 {
 	0.0000000000000000f, 0.0112834155558496f, 0.0225645746918449f, 0.0338412223417354f, 0.0451111061451247f, 0.0563719777970166f, 0.0676215943933084f, 0.0788577197708907f, 0.0900781258410182f, 0.1012805939146269f, 0.1124629160182849f, 0.1236228961994743f, 0.1347583518199201f, 0.1458671148356958f, 0.1569470330628558f, 0.1679959714273635f, 0.1790118131981057f, 0.1899924612018088f, 0.2009358390186958f, 0.2118398921577497f, 0.2227025892104785f, 0.2335219229821036f, 0.2442959115991287f, 0.2550225995922731f, 0.2657000589537920f, 0.2763263901682369f, 0.2868997232157491f, 0.2974182185470128f, 0.3078800680290340f, 0.3182834958609522f, 0.3286267594591273f, 0.3389081503107902f, 0.3491259947955827f, 0.3592786549743590f, 0.3693645293446587f, 0.3793820535623103f, 0.3893297011286642f, 0.3992059840429992f, 0.4090094534196940f, 0.4187387000697961f, 0.4283923550466685f, 0.4379690901554394f, 0.4474676184260253f, 0.4568866945495403f, 0.4662251152779575f, 0.4754817197869237f, 0.4846553900016797f, 0.4937450508860821f, 0.5027496706947650f, 0.5116682611885233f, 0.5204998778130465f, 0.5292436198411704f, 0.5378986304788544f, 0.5464640969351416f, 0.5549392504563904f, 0.5633233663251089f, 0.5716157638237684f, 0.5798158061639961f, 0.5879229003816007f, 0.5959364971979084f, 0.6038560908479259f, 0.6116812188758802f, 0.6194114618987212f, 0.6270464433381957f, 0.6345858291221413f, 0.6420293273556719f, 0.6493766879629542f, 0.6566277023003051f, 0.6637822027413580f, 0.6708400622350779f, 0.6778011938374186f, 0.6846655502174442f, 0.6914331231387512f, 0.6981039429170445f, 0.7046780778547458f, 0.7111556336535152f, 0.7175367528055909f, 0.7238216139648592f, 0.7300104312985789f, 0.7361034538206912f, 0.7421009647076605f, 0.7480032805977895f, 0.7538107508749625f, 0.7595237569377731f, 0.7651427114549946f, 0.7706680576083524f, 0.7761002683235567f, 0.7814398454905507f, 0.7866873191739325f, 0.7918432468144954f, 0.7969082124228322f, 0.8018828257659413f, 0.8067677215477618f, 0.8115635585845578f, 0.8162710189760625f, 0.8208908072732779f, 0.8254236496438183f, 0.8298702930356671f, 0.8342315043402079f, 0.8385080695553697f, 0.8427007929497148f, 0.8468104962282766f, 0.8508380177009420f, 0.8547842114541484f, 0.8586499465266515f, 0.8624361060900967f, 0.8661435866351080f, 0.8697732971635868f, 0.8733261583878896f, 0.8768031019375383f, 0.8802050695740817f, 0.8835330124147180f, 0.8867878901652547f, 0.8899706703629624f, 0.8930823276298567f, 0.8961238429369151f, 0.8990962028797120f, 0.9020003989659357f, 0.9048374269152169f, 0.9076082859716850f, 0.9103139782296355f, 0.9129555079726694f, 0.9155338810266469f, 0.9180501041267614f, 0.9205051842990297f, 0.9229001282564582f, 0.9252359418101295f, 0.9275136292954247f, 0.9297341930135782f, 0.9318986326887336f, 0.9340079449406524f, 0.9360631227731995f, 0.9380651550787114f, 0.9400150261583302f, 0.9419137152583653f, 0.9437621961227241f, 0.9455614365614331f, 0.9473123980352520f, 0.9490160352563626f, 0.9506732958050965f, 0.9522851197626489f, 0.9538524393597054f, 0.9553761786408961f, 0.9568572531449688f, 0.9582965696005648f, 0.9596950256374592f, 0.9610535095131181f, 0.9623728998544057f, 0.9636540654142689f, 0.9648978648432043f, 0.9661051464753108f, 0.9672767481287117f, 0.9684134969201232f, 0.9695162090933357f, 0.9705856898613637f, 0.9716227332620125f, 0.9726281220266002f, 0.9736026274615670f, 0.9745470093426969f, 0.9754620158216676f, 0.9763483833446440f, 0.9772068365826185f, 0.9780380883732035f, 0.9788428396735702f, 0.9796217795242320f, 0.9803755850233603f, 0.9811049213113221f, 0.9818104415651265f, 0.9824927870024649f, 0.9831525868950262f, 0.9837904585907746f, 0.9844070075448683f, 0.9850028273589058f, 0.9855784998281805f, 0.9861345949966329f, 0.9866716712191824f, 0.9871902752311301f, 0.9876909422243223f, 0.9881741959297683f, 0.9886405487064082f, 0.9890905016357308f, 0.9895245446219444f, 0.9899431564974077f, 0.9903468051330306f, 0.9907359475533626f, 0.9911110300560857f, 0.9914724883356396f, 0.9918207476107068f, 0.9921562227552937f, 0.9924793184331480f, 0.9927904292352574f, 0.9930899398201836f, 0.9933782250569847f, 0.9936556501704964f, 0.9939225708887325f, 0.9941793335921891f, 0.9944262754648279f, 0.9946637246465300f, 0.9948920003868136f, 0.9951114131996171f, 0.9953222650189527f, 0.9955248493552482f, 0.9957194514521921f, 0.9959063484439121f, 0.9960858095123195f, 0.9962580960444569f, 0.9964234617896959f, 0.9965821530166383f, 0.9967344086695764f, 0.9968804605243777f, 0.9970205333436670f, 0.9971548450311778f, 0.9972836067851606f, 0.9974070232507333f, 0.9975252926710697f, 0.9976386070373253f, 0.9977471522372077f, 0.9978511082021002f, 0.9979506490526588f, 0.9980459432428015f, 0.9981371537020181f, 0.9982244379759344f, 0.9983079483650648f, 0.9983878320616981f, 0.9984642312848625f, 0.9985372834133188f, 0.9986071211165417f, 0.9986738724836455f, 0.9987376611502190f, 0.9987986064230412f, 0.9988568234026434f, 0.9989124231037001f, 0.9989655125732240f, 0.9990161950065498f, 0.9990645698610920f, 0.9991107329678676f, 0.9991547766407751f, 0.9991967897836264f, 0.9992368579949287f, 0.9992750636704192f, 0.9993114861033550f, 0.9993462015825647f, 0.9993792834882711f, 0.9994108023856942f, 0.9994408261164486f, 0.9994694198877490f, 0.9994966463594419f, 0.9995225657288811f, 0.9995472358136659f, 0.9995707121322661f, 0.9995930479825550f, 0.9996142945182758f, 0.9996345008234653f, 0.9996537139848649f, 0.9996719791623431f, 0.9996893396573607f, 0.9997058369795080f, 0.9997215109111428f, 0.9997363995701628f, 0.9997505394709432f, 0.9997639655834707f, 0.9997767113907082f, 0.9997888089442237f, 0.9998002889181156f, 0.9998111806612684f, 0.9998215122479760f, 0.9998313105269614f, 0.9998406011688324f, 0.9998494087120056f, 0.9998577566071316f, 0.9998656672600594f, 0.9998731620733716f, 0.9998802614865254f, 0.9998869850146334f, 0.9998933512859194f, 0.9998993780778804f, 0.9999050823521898f, 0.9999104802883753f, 0.9999155873163016f, 0.9999204181474947f, 0.9999249868053346f, 0.9999293066541523f, 0.9999333904272598f, 0.9999372502539452f, 0.9999408976854610f, 0.9999443437200386f, 0.9999475988269556f, 0.9999506729696857f, 0.9999535756281590f, 0.9999563158201617f, 0.9999589021219005f, 0.9999613426877595f, 0.9999636452692755f, 0.9999658172333573f, 0.9999678655797740f, 0.9999697969579359f, 0.9999716176829931f, 0.9999733337512747f, 0.9999749508550908f, 0.9999764743969193f, 0.9999779095030015f, 0.9999792610363629f, 0.9999805336092855f, 0.9999817315952467f, 0.9999828591403461f, 0.9999839201742398f, 0.9999849184206001f, 0.9999858574071167f, 0.9999867404750594f, 0.9999875707884177f, 0.9999883513426329f, 0.9999890849729398f, 0.9999897743623336f, 0.9999904220491747f, 0.9999910304344468f, 0.9999916017886847f, 0.9999921382585810f, 0.9999926418732865f, 0.9999931145504183f, 0.9999935581017863f, 0.9999939742388482f, 0.9999943645779092f, 0.9999947306450711f, 0.9999950738809456f, 0.9999953956451422f, 0.9999956972205364f, 0.9999959798173321f, 0.9999962445769250f, 0.9999964925755764f, 0.9999967248279045f, 0.9999969422902035f, 0.9999971458635975f, 0.9999973363970345f, 0.9999975146901312f, 0.9999976814958739f, 0.9999978375231799f, 0.9999979834393308f, 0.9999981198722784f, 0.9999982474128331f, 0.9999983666167385f, 0.9999984780066371f, 0.9999985820739346f, 0.9999986792805644f, 0.9999987700606605f, 0.9999988548221410f, 0.9999989339482065f, 0.9999990077987595f, 0.9999990767117464f, 0.9999991410044279f, 0.9999992009745795f, 0.9999992569016276f, 0.9999993090477226f, 0.9999993576587528f, 0.9999994029653040f, 0.9999994451835634f, 0.9999994845161754f, 0.9999995211530479f, 0.9999995552721144f, 0.9999995870400529f, 0.9999996166129631f, 0.9999996441370069f, 0.9999996697490110f, 0.9999996935770344f, 0.9999997157409060f, 0.9999997363527273f, 0.9999997555173494f, 0.9999997733328196f, 0.9999997898908039f, 0.9999998052769828f, 0.9999998195714259f, 0.9999998328489421f, 0.9999998451794108f, 0.9999998566280922f, 0.9999998672559198f, 0.9999998771197746f, 0.9999998862727435f, 0.9999998947643614f, 0.9999999026408388f, 0.9999999099452765f, 0.9999999167178646f, 0.9999999229960725f, 0.9999999288148247f, 0.9999999342066670f, 0.9999999392019217f, 0.9999999438288334f, 0.9999999481137065f, 0.9999999520810322f, 0.9999999557536089f, 0.9999999591526549f, 0.9999999622979134f, 0.9999999652077514f, 0.9999999678992515f, 0.9999999703882987f, 0.9999999726896611f, 0.9999999748170654f, 0.9999999767832677f, 0.9999999786001196f, 0.9999999802786297f, 0.9999999818290218f, 0.9999999832607887f, 0.9999999845827421f, 0.9999999858030606f, 0.9999999869293328f, 0.9999999879685986f, 0.9999999889273877f, 0.9999999898117551f, 0.9999999906273142f, 0.9999999913792682f, 0.9999999920724392f, 0.9999999927112944f, 0.9999999932999724f, 0.9999999938423057f, 0.9999999943418427f, 0.9999999948018690f, 0.9999999952254246f, 0.9999999956153229f, 0.9999999959741669f, 0.9999999963043638f, 0.9999999966081397f, 0.9999999968875528f, 0.9999999971445058f, 0.9999999973807567f, 0.9999999975979301f, 0.9999999977975265f, 0.9999999979809319f, 0.9999999981494259f, 0.9999999983041898f, 0.9999999984463144f, 0.9999999985768053f, 0.9999999986965913f, 0.9999999988065282f, 0.9999999989074059f, 0.9999999989999523f, 0.9999999990848385f, 0.9999999991626829f, 0.9999999992340556f, 0.9999999992994814f, 0.9999999993594437f, 0.9999999994143880f, 0.9999999994647240f, 0.9999999995108290f, 0.9999999995530502f, 0.9999999995917070f, 0.9999999996270934f, 0.9999999996594795f, 0.9999999996891137f, 0.9999999997162244f, 0.9999999997410216f, 0.9999999997636982f, 0.9999999997844314f, 0.9999999998033839f, 0.9999999998207052f, 0.9999999998365327f, 0.9999999998509920f, 0.9999999998641989f, 0.9999999998762595f, 0.9999999998872711f, 0.9999999998973228f, 0.9999999999064966f, 0.9999999999148674f, 0.9999999999225040f, 0.9999999999294694f, 0.9999999999358213f, 0.9999999999416126f, 0.9999999999468917f, 0.9999999999517030f, 0.9999999999560869f, 0.9999999999600808f, 0.9999999999637186f, 0.9999999999670313f, 0.9999999999700474f, 0.9999999999727929f, 0.9999999999752915f, 0.9999999999775653f, 0.9999999999796336f, 0.9999999999815150f, 0.9999999999832258f, 0.9999999999847813f, 0.9999999999861953f, 0.9999999999874802f, 0.9999999999886479f, 0.9999999999897087f, 0.9999999999906721f, 0.9999999999915470f, 0.9999999999923415f, 0.9999999999930624f, 0.9999999999937168f, 0.9999999999943107f, 0.9999999999948495f, 0.9999999999953380f, 0.9999999999957810f, 0.9999999999961828f, 0.9999999999965470f, 0.9999999999968769f, 0.9999999999971760f, 0.9999999999974469f, 0.9999999999976923f, 0.9999999999979145f, 0.9999999999981156f, 0.9999999999982978f, 0.9999999999984626f, 0.9999999999986117f, 0.9999999999987466f, 0.9999999999988686f, 0.9999999999989789f, 0.9999999999990787f, 0.9999999999991689f, 0.9999999999992504f, 0.9999999999993240f, 0.9999999999993905f, 0.9999999999994507f, 0.9999999999995048f, 0.9999999999995539f, 0.9999999999995981f, 0.9999999999996381f, 0.9999999999996740f, 0.9999999999997065f, 0.9999999999997358f, 0.9999999999997622f, 0.9999999999997861f, 0.9999999999998075f, 0.9999999999998268f, 0.9999999999998444f, 0.9999999999998600f, 0.9999999999998741f, 0.9999999999998870f, 0.9999999999998983f, 0.9999999999999087f, 0.9999999999999181f, 0.9999999999999263f, 0.9999999999999338f, 0.9999999999999407f, 0.9999999999999467f, 0.9999999999999523f, 0.9999999999999572f, 0.9999999999999616f, 0.9999999999999655f, 0.9999999999999691f, 0.9999999999999722f, 0.9999999999999751f, 0.9999999999999778f, 0.9999999999999800f, 0.9999999999999821f, 0.9999999999999840f, 0.9999999999999857f, 0.9999999999999871f, 0.9999999999999885f, 0.9999999999999898f, 0.9999999999999908f, 0.9999999999999918f, 0.9999999999999927f, 0.9999999999999933f, 0.9999999999999941f, 0.9999999999999947f, 0.9999999999999953f, 0.9999999999999958f, 0.9999999999999962f, 0.9999999999999967f, 0.9999999999999970f, 0.9999999999999973f, 0.9999999999999976f, 0.9999999999999979f, 0.9999999999999981f, 0.9999999999999983f, 0.9999999999999985f, 0.9999999999999987f, 0.9999999999999988f, 0.9999999999999989f, 0.9999999999999991f, 0.9999999999999991f, 0.9999999999999992f, 0.9999999999999993f, 0.9999999999999993f, 0.9999999999999994f, 0.9999999999999996f, 0.9999999999999996f, 0.9999999999999996f, 0.9999999999999997f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999998f, 0.9999999999999999f, 0.9999999999999999f, 0.9999999999999999f, 0.9999999999999999f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f, 1.0000000000000000f
@@ -259,6 +260,7 @@ static float erf(const float x)
 	if(x>0) return erftable[(int)(min(6.f,x)*100)];
 	return -erftable[(int)(min(6.f,-x)*100)];
 }
+#endif
 
 enum distEnum {DIST_EUCLIDEAN, DIST_MANHATTAN, DIST_INFINITE} ;
 

Reply via email to