Nik Leuenberger Deal.ii Finite Volume Method test problem June 19, 2024

Deal.ii

1. One dimensional example, finite volume method

1.1. Governing equations:

$$\frac{\partial}{\partial x} \left(\kappa \frac{\partial \phi}{\partial x} \right) = 0, \quad 0 \le x \le 1, \quad \kappa = \text{const.}$$
(1)

The reason why I use partial derivatives, and write the second order derivative like this, is because the notation is closer to the more complicated system I would like to solve later on.

1.2. Boundary conditions:

- x = 0 $\phi = 0$
- x = 1 constant flux I_{app} (i.e. $\kappa \frac{\partial \phi}{\partial x} = I_{app}$)
- 1.3. Solution. The analytical solution is given by

$$\phi(x) = \frac{I_{app}}{\kappa} x \tag{2}$$

1.4. Integral Formulation. We formulate equation (1) in integral formulation for a constant κ

$$\kappa \int_{V} \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial x} \right) dV = 0, \tag{3}$$

Using Gauss' divergence theorem in 1D, we replace the volume integration with a surface integration

$$\kappa \int_{S} \left(\frac{\partial \phi}{\partial x} \right) dS = 0 \tag{4}$$

1.5. Discretization. We want to use n_x cell-centered finite volumes of constant width $h = \Delta x = \Delta y =$ $\Delta z = \frac{1}{n_x}$, cell interfaces located at $f_i = ih$, $0 \le i \le n_x$ and cell centeres located at $x_i = (i - 1/2)h =$ $\left\{\frac{h}{2}, \frac{3h}{2}, \dots, 1-\frac{h}{2}\right\}, \quad 1 \le i \le n_x.$ Figure 1 shows the setup of the finite volume method for $n_x = 7$ volumes. The discrete unknowns ϕ_i will be an approximation to the solution at $x = x_i$. Therefore, our system has n_x unknowns.

FIGURE 1. 1D Finite Volume setup

For each control volume, we then approximate equation (4) to obtain n_x equations for the n_x unknowns. For example for control volume V_5 in Figure 1, this would read:

$$\kappa \left[\int_{f_4} \frac{\partial \phi}{\partial x} dS + \int_{f_5} \frac{\partial \phi}{\partial x} dS \right] \tag{5}$$

$$= \kappa \left[-\left(\frac{\phi_5 - \phi_4}{h}\right) + \left(\frac{\phi_6 - \phi_5}{h}\right) \right] h^2 = 0, \tag{6}$$

where we have chosen an outward pointing normal vector (i.e. positive for f_5 and negative for f_4). The equations for all control volumes $2, \ldots, n_x - 1$ will yield similar equations of the form.

$$\kappa \left[\left(\frac{\phi_{i-1} - \phi_i}{h} \right) + \left(\frac{\phi_{i+1} - \phi_i}{h} \right) \right] h^2 = 0, \quad 2 \le i \le n_x - 1 \tag{7}$$

For the two boundary conditions, the boundary fluxes lead to the following equations:

$$\kappa \left[\left(\frac{\phi_{\text{left}} - \phi_1}{h/2} \right) + \left(\frac{\phi_2 - \phi_1}{h} \right) \right] h^2 = 0 \quad i = 1$$
(8)

$$\kappa \left(\frac{\phi_{n_x-1} - \phi_{n_x}}{h}\right) h^2 - I_{app} h^2 = 0 \quad i = n_x \tag{9}$$

RESIDUAL AND JACOBIAN FORMULATION

Because ultimately, we would like to solve a time-dependent, non-linear problem, we will denote the linear system to be solved $J\delta = -R$, where $R \in \mathbb{R}^{n_x \times 1}$ is the nonlinear residual, and $J \in \mathbb{R}^{n_x \times n_x}$ is the Jacobian matrix. The solution $\delta \in \mathbb{R}^{n_x \times 1}$ will be the incremental update in a Newton-Raphson scheme, but for this *linear* problem, the solution will be given by $\phi_i = \delta_i$.

2. Assembly function

In our assembly function, we need to fill the matrix J and right-hand size -R with the right entries. Similar to the step-12/12b tutorials, we can split the task into three distinct tasks for cells, boundaries and faces:

- 2.1. Cell. nothing to be done, later, add time-derivative term here
- 2.2. Boundary. Below is the assembly part for the boundary faces

Algorithm 1 boundary faces at x = 0

1: for each face
$$f$$
 in BoundaryFaces $x = 0$ do
2: $x_i \leftarrow \text{CellCenters}[\text{right_cell}(f)]$
3: $\text{Residuals}[i] + = \kappa \left(\frac{\phi_{\text{left}} - \phi_i}{h/2}\right) h^2$
4: $\text{Jacobian}[i, i] + = -\kappa \frac{2}{h/2} h^2$
5: end for

Algorithm 2 boundary faces at x = 1

```
1: for each face f in BoundaryFaces x = 1 do

2: x_i \leftarrow \text{CellCenters}[\text{left\_cell}(f)]

3: Residuals[i] + = -I_{app}h^2

4: end for
```

2.3. Interior Faces. Below is the assembly part for the interior faces

Algorithm 3 interior face (visit each face once)

1: for each face f in BoundaryFaces x = 1 do 2: $x_l \leftarrow \text{CellCenters}[\text{left_cell}(f)]$ $x_r \leftarrow \text{CellCenters}[\text{right}_\text{cell}(f)]$ 3: flux = $\kappa \left(\frac{\phi_r - \phi_l}{h}\right) h^2$ 4: Residuals [l] + = flux 5: $\operatorname{Residuals}[r] + = -\operatorname{flux}$ 6: Jacobian $[l, l] + = -\kappa \frac{1}{h}h^2$ 7: $\operatorname{Jacobian}[r,r] + = -\kappa \frac{1}{h}h^2$ 8: Jacobian[l, r] + = $\kappa \frac{1}{h}h^2$ Jacobian[r, l] + = $\kappa \frac{1}{h}h^2$ 9: 10:11: end for

REFERENCES

3. Plan on how to implement in deal.

- use elements of type FE_DGQ
- for a start (maybe even forever), the degree of the element can be zero (i.e. piecewise constant), like in a piecewise constant finite volume scheme.
- build on step-12 or step-12b tutorial and mainly change the three assembly functions as defined above as well as the boundary conditions.
- I hard-coded these functions in the appended nik-step12.cc file that produces the correct matrix and solution for the special case of $\kappa = h = 1$ and $I_{app} = -1$.

4. QUESTIONS

I think starting from the **step-12** or **step-12b** tutorials seems to be a suitable choice since they already use discontinous elements.

My concrete questions for the forum are the following.

- How should I best write the three functions for the matrix assembly with as less hard-coding as possible?
- How can I best access the values of the current cell and neighbor cell (i.e. ϕ_{me} and $\phi_{neighbor}$) in (7)?

When I was trying to find resources for the derivation of a weak form using the discontinuous Galerkin method for (1), there were many different methods in chapter 1 of Rivière [1], some with penalty terms etc., which I think might be more complicated to implement. I really like the simplicity of the finite volume method but would like to use the provided DG tools in deal.ii

References

 Rivière, B. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations eprint: https: //epubs.siam.org/doi/pdf/10.1137/1.9780898717440. https://epubs.siam.org/doi/abs/10. 1137/1.9780898717440 (Society for Industrial and Applied Mathematics, 2008).