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1. One dimensional example, finite volume method

1.1. Governing equations:
∂

∂x

(
κ

∂ϕ

∂x

)
= 0, 0 ≤ x ≤ 1, κ = const. (1)

The reason why I use partial derivatives, and write the second order derivative like this, is because the
notation is closer to the more complicated system I would like to solve later on.

1.2. Boundary conditions:
• x = 0 ϕ = 0
• x = 1 constant flux Iapp (i.e. κ∂ϕ

∂x
= Iapp)

1.3. Solution. The analytical solution is given by

ϕ(x) = Iapp

κ
x (2)

1.4. Integral Formulation. We formulate equation (1) in integral formulation for a constant κ

κ
∫

V

∂

∂x

(
∂ϕ

∂x

)
dV = 0, (3)

Using Gauss’ divergence theorem in 1D, we replace the volume integration with a surface integration

κ
∫

S

(
∂ϕ

∂x

)
dS = 0 (4)

1.5. Discretization. We want to use nx cell-centered finite volumes of constant width h = ∆x = ∆y =
∆z = 1

nx
, cell interfaces located at fi = ih, 0 ≤ i ≤ nx and cell centeres located at xi = (i − 1/2)h ={

h
2 , 3h

2 , . . . , 1− h
2

}
, 1 ≤ i ≤ nx. Figure 1 shows the setup of the finite volume method for nx = 7 volumes.

The discrete unknowns ϕi will be an approximation to the solution at x = xi. Therefore, our system has
nx unknowns.
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Figure 1. 1D Finite Volume setup

For each control volume, we then approximate equation (4) to obtain nx equations for the nx unknowns.
For example for control volume V5 in Figure 1, this would read:

κ

[∫
f4

∂ϕ

∂x
dS +

∫
f5

∂ϕ

∂x
dS

]
(5)

= κ

[
−
(

ϕ5 − ϕ4

h

)
+
(

ϕ6 − ϕ5

h

)]
h2 = 0, (6)

where we have chosen an outward pointing normal vector (i.e. positive for f5 and negative for f4). The
equations for all controle volumes 2, . . . , nx − 1 will yield similar equations of the form.

κ

[(
ϕi−1 − ϕi

h

)
+
(

ϕi+1 − ϕi

h

)]
h2 = 0, 2 ≤ i ≤ nx − 1 (7)
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For the two boundary conditions, the boundary fluxes lead to the following equations:

κ

[(
ϕleft − ϕ1

h/2

)
+
(

ϕ2 − ϕ1

h

)]
h2 = 0 i = 1 (8)

κ

(
ϕnx−1 − ϕnx

h

)
h2 − Iapph2 = 0 i = nx (9)

Residual and Jacobian formulation

Because ultimately, we would like to solve a time-dependent, non-linear problem, we will denote the
linear system to be solved Jδ = −R, where R ∈ Rnx×1 is the nonlinear residual, and J ∈ Rnx×nx is the
Jacobian matrix. The solution δ ∈ Rnx×1 will be the incremental update in a Newton-Raphson scheme,
but for this linear problem, the solution will be given by ϕi = δi.

2. Assembly function

In our assembly function, we need to fill the matrix J and right-hand size −R with the right entries.
Similar to the step-12/12b tutorials, we can split the task into three distinct tasks for cells, boundaries
and faces:
2.1. Cell. nothing to be done, later, add time-derivative term here
2.2. Boundary. Below is the assembly part for the boundary faces

Algorithm 1 boundary faces at x = 0
1: for each face f in BoundaryFaces x = 0 do
2: xi ← CellCenters[right_cell(f)]
3: Residuals[i]+ = κ

(
ϕleft−ϕi

h/2

)
h2

4: Jacobian[i, i]+ = −κ 2
h/2h2

5: end for

Algorithm 2 boundary faces at x = 1
1: for each face f in BoundaryFaces x = 1 do
2: xi ← CellCenters[left_cell(f)]
3: Residuals[i]+ = −Iapph2

4: end for

2.3. Interior Faces. Below is the assembly part for the interior faces

Algorithm 3 interior face (visit each face once)
1: for each face f in BoundaryFaces x = 1 do
2: xl ← CellCenters[left_cell(f)]
3: xr ← CellCenters[right_cell(f)]
4: flux = κ

(
ϕr−ϕl

h

)
h2

5: Residuals[l]+ =flux
6: Residuals[r]+ =-flux
7: Jacobian[l, l]+ = −κ 1

h
h2

8: Jacobian[r, r]+ = −κ 1
h
h2

9: Jacobian[l, r]+ = κ 1
h
h2

10: Jacobian[r, l]+ = κ 1
h
h2

11: end for
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3. Plan on how to implement in deal.ii

• use elements of type FE_DGQ
• for a start (maybe even forever), the degree of the element can be zero (i.e. piecewise constant), like

in a piecewise constant finite volume scheme.
• build on step-12 or step-12b tutorial and mainly change the three assembly functions as defined

above as well as the boundary conditions.
• I hard-coded these functions in the appended nik-step12.cc file that produces the correct matrix and

solution for the special case of κ = h = 1 and Iapp = −1.

4. Questions

I think starting from the step-12 or step-12b tutorials seems to be a suitable choice since they already
use discontinous elements.

My concrete questions for the forum are the following.
• How should I best write the three functions for the matrix assembly with as less hard-coding as

possible?
• How can I best access the values of the current cell and neighbor cell (i.e. ϕme and ϕneighbor) in (7)?

When I was trying to find resources for the derivation of a weak form using the discontinous Galerkin
method for (1), there were many different methods in chapter 1 of Rivière [1], some with penalty terms
etc., which I think might be more complicated to implement. I really like the simplicity of the finite volume
method but would like to use the provided DG tools in deal.ii
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