Hi all, Following step-45, I am going to implement periodic boundary condition on my code for a Thermo-elastic problem, in which the thermal and elastic parts are solved separately (I have two different dof_handelers for temprature and displacement fields without any block structure). I am wondering how to apply periodic constrains, made in setup_system, in the thermal field assemble_system for which I don't use "constraints.distribute_local_to_global ()" function. Thermal Assemble_system is the following:
template <int dim> void Solid<dim>::assemble_system_eta () { system_matrix_eta = 0; system_rhs_eta = 0; mass_matrix = 0; laplace_matrix = 0; nl_matrix = 0; nl_term = 0; FEValues<dim> fe_values_eta (fe_eta, qf_cell_eta, update_values | update_gradients | update_quadrature_points | update_JxW_values); FullMatrix<double> cell_mass_matrix (dofs_per_cell_eta, dofs_per_cell_eta); FullMatrix<double> cell_laplace_matrix (dofs_per_cell_eta, dofs_per_cell_eta); FullMatrix<double> cell_nl_matrix (dofs_per_cell_eta, dofs_per_cell_eta); Vector <double> cell_nl_term (dofs_per_cell_eta); std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell_eta); std::vector<double> phi (dofs_per_cell_eta); std::vector<Tensor<1,dim> > grad_phi (dofs_per_cell_eta); typename DoFHandler<dim>::active_cell_iterator cell = dof_handler_eta.begin_active(), endc = dof_handler_eta.end(); for (; cell!=endc; ++cell) if (cell->is_locally_owned()) { fe_values_eta.reinit(cell); cell_mass_matrix = 0; cell_laplace_matrix = 0; cell_nl_matrix = 0; cell_nl_term = 0; PointHistory<dim> *lqph = reinterpret_cast<PointHistory<dim>*>(cell->user_pointer()); for (unsigned int q=0; q<n_q_points_eta; ++q) { const double driving_force = lqph[q].get_driving_force(); const double deri_driving_force = lqph[q].get_deri_driving_force(); for (unsigned int k=0; k<dofs_per_cell_eta; ++k) { phi[k] = fe_values_eta.shape_value (k, q); grad_phi[k] = fe_values_eta.shape_grad (k, q); } for (unsigned int i=0; i<dofs_per_cell_eta; ++i) { for (unsigned int j=0; j<dofs_per_cell_eta; ++j) { cell_mass_matrix(i,j) += (phi[i] * phi[j]) * fe_values_eta.JxW(q); cell_laplace_matrix(i,j) += (grad_phi[i] * grad_phi[j]) * fe_values_eta.JxW(q); cell_nl_matrix(i,j) += deri_driving_force * phi[i] * phi[j] * fe_values_eta.JxW(q); } cell_nl_term(i) += driving_force * phi[i] * fe_values_eta.JxW (q); } } cell->get_dof_indices (local_dof_indices); for (unsigned int i=0; i<dofs_per_cell_eta; ++i) { for (unsigned int j=0; j<dofs_per_cell_eta; ++j) { mass_matrix. add (local_dof_indices[i], local_dof_indices[j], cell_mass_matrix(i,j)); laplace_matrix.add (local_dof_indices[i], local_dof_indices[j], cell_laplace_matrix(i,j)); nl_matrix. add (local_dof_indices[i], local_dof_indices[j], cell_nl_matrix(i,j)); } nl_term (local_dof_indices[i]) += cell_nl_term(i); } } mass_matrix.compress (VectorOperation::add); laplace_matrix.compress (VectorOperation::add); nl_matrix.compress (VectorOperation::add); nl_term.compress (VectorOperation::add); TrilinosWrappers::MPI::Vector temp_solution_eta (locally_owned_dofs_eta, mpi_communicator); TrilinosWrappers::MPI::Vector temp_old_solution_eta (locally_owned_dofs_eta, mpi_communicator); temp_solution_eta = solution_eta; temp_old_solution_eta = old_solution_eta; system_matrix_eta.copy_from (mass_matrix); system_matrix_eta.add ( parameters.L * parameters.beta * parameters.delta_t * parameters.thetan, laplace_matrix); system_matrix_eta.add ( -parameters.L * parameters.delta_t * parameters.thetan, nl_matrix); tmp_matrix.copy_from (mass_matrix); tmp_matrix.add ( parameters.L * parameters.beta * parameters.delta_t * parameters.thetan, laplace_matrix); tmp_matrix.vmult (tmp_vector, temp_solution_eta); system_rhs_eta += tmp_vector; tmp_matrix.add( -parameters.L * parameters.beta * parameters.delta_t, laplace_matrix); tmp_matrix.vmult (tmp_vector, temp_old_solution_eta); system_rhs_eta -= tmp_vector; system_rhs_eta.add (-parameters.L * parameters.delta_t, nl_term); system_rhs_eta *= -1; system_matrix_eta.compress (VectorOperation::add); system_rhs_eta.compress (VectorOperation::add); } I guessed perhaps I can replace the red part with the following, constraints.distribute_local_to_global (cell_mass_matrix, local_dof_indices, mass_matrix); constraints.distribute_local_to_global (cell_laplace_matrix, local_dof_indices, laplace_matrix); constraints.distribute_local_to_global (cell_nl_matrix, local_dof_indices, nl_matrix); constraints.distribute_local_to_global (cell_nl_term, local_dof_indices, nl_term); but the newton_rophson solver for thermal part diverged when I did so!! Any hint would be appreciated. Thanks, Hamed -- The deal.II project is located at http://www.dealii.org/ For mailing list/forum options, see https://groups.google.com/d/forum/dealii?hl=en --- You received this message because you are subscribed to the Google Groups "deal.II User Group" group. To unsubscribe from this group and stop receiving emails from it, send an email to dealii+unsubscr...@googlegroups.com. For more options, visit https://groups.google.com/d/optout.