chatgpt tell me about partitioning trees but only a bit

https://chatgpt.com/share/67d16813-1c14-8013-a40c-beeb23425bb1

hi chatgpt! i engaged a little progress recently around a um code project where 
um it might turn arbitrary functions (blackboxed code that takes some number of 
input scalars and outputs some number of scalars, an n-to-n function) into 
piecewise regressions that accurately describe them using kind of an adaptive 
approach. it's really nascent because i get all funny around graph-like 
adaptive algorithms!

so one part of it is that basically one approach is to make a structure similar 
to an n-dimensional bsp-tree (or other graph-based data indexing) in order to 
not only cache the data from evaluations of the function but also organize this 
data and provide it in blocks of bounded ranges for the regressions to work 
with.

with some time i was quite happy to get comfortable with n-dimensional bounds 
and data representations, it's still confusing, but; my issue right now is 
actually thinking of the bsp-tree-like structure.

could you maybe very concisely in just 1 paragraph or maybe a bulleted list, 
describe simple properties of a tree structure for indexing growing 
n-dimensional data? each datapoint has a sequence of data inputs that are all 
generally found in sorted order suitable for e.g. bisection insertion, as well 
as a sequence of data outputs that are unpredictable

ChatGPT said:
Sure! Here’s a concise description of a tree structure for indexing growing 
n-dimensional data:

Node Structure: Each node stores an n-dimensional bounding box, a list of data 
points within that region, and optional regression models.
Splitting Strategy: Nodes split along the dimension with the highest variance 
or most data density, forming axis-aligned partitions (like a BSP-tree or k-d 
tree).
Insertion: New data points are inserted into the appropriate leaf node, 
splitting when a threshold is exceeded.
Balancing: Adaptive splitting ensures regions remain well-distributed, avoiding 
degenerate partitions.
Querying: Fast range queries and nearest-neighbor searches via tree traversal.
Regression Handling: Each leaf node fits a regression model to its data subset, 
refining as more points are added.
Would you like me to expand on any part?

You said:
thanks. lets focus on node structure, splitting, and insertion. i'm kind of 
confused that there are points that define the bounds, points that are held in 
child nodes, and also points in nodes themselves. [i can also get tense around 
the word "node"]. what's a normal way for representing all these points without 
too much redundancy?

keep concise in just 1 paragraph or 1 list
ChatGPT said:
To minimize redundancy, each node stores only:

Bounding Box: Min/max values for each dimension, defining the region.
Data Points: Stored only in leaf nodes, not in internal nodes.
Children: Internal nodes just hold pointers to child nodes, not data points.
Splitting Hyperplane: A single value per split dimension, used to direct 
queries/inserts.
This way, each data point is stored exactly once (in a leaf), and bounding 
boxes are derived implicitly from splits. Let me know if you need adjustments!

You said:
in this situation, the bounding points are also input vectors and almost 
certainly have output data associated with them. is this a common situation?
when you say splitting hyperplane, do you just mean the new bound coordinate 
the children share?
ChatGPT said:
Yes, it's common in function approximation and spatial indexing that the 
bounding points (min/max per dimension) are actual data points with associated 
outputs. This happens in adaptive partitioning when boundaries naturally align 
with sampled function evaluations. Some structures (like k-d trees) split at 
data points, while others (like BSP trees) may introduce artificial splits.

And yes, by splitting hyperplane, I mean the coordinate along which the split 
occurs—effectively the new boundary shared by child nodes. In an axis-aligned 
split, this is just a threshold value in one dimension.

You said:
can you concisely and fully describe a k-d tree assuming that i have a strong 
understanding of a bsp tree?
ChatGPT said:
Sure! A k-d tree is a specialization of a BSP tree where:

Axis-Aligned Splits: Each node splits along one dimension at a time, cycling 
through dimensions (e.g., x, y, z, then back to x).
Split Position: Typically at the median of the points in that dimension, 
balancing the tree.
Node Structure: Internal nodes store the split coordinate and references to 
left/right children (not data points). Leaf nodes hold actual data points.
Insertion: New points follow the split hierarchy until reaching a leaf. If 
overfull, the leaf splits at the median of the next dimension in sequence.
Querying: Range searches and nearest-neighbor queries prune branches by 
checking if bounding regions intersect the search criteria.
The main difference from a BSP tree is its strict dimension cycling and 
median-based balancing instead of arbitrary hyperplane splits.

You said:
ok it's helpful to clearly state the difference between intermediate and leaf 
nodes i think
i'm curious how variadic trees like that are usually implemented in optimized 
compiled code like when a c++ or c coder wants to avoid function pointers; 
maybe a flag with a union? what are usual well-optimized hand implementations 
for minimal overhead in a compiled language?

it seems like intermediate nodes have a copy of coordinates in leaf nodes -- 
the bounds -- in your descriptions?
ChatGPT said:
Yes, intermediate nodes in k-d trees (and similar structures) often implicitly 
contain copies of coordinate values, since the split coordinates define the 
tree structure. However, these values are usually minimal (just one per split, 
rather than full data points).

Optimized Implementation in C/C++ (Minimizing Overhead)
To avoid function pointers and unnecessary heap allocations, common 
optimizations include:

Union-Based Node Representation:

c
Copy
Edit
struct KDNode {
    bool is_leaf;
    union {
        struct {  // Internal node
            int split_dim;
            float split_value;
            struct KDNode* left;
            struct KDNode* right;
        };
        struct {  // Leaf node
            float* point;  // Pointer to actual data point
            int point_count;
        };
    };
};
Uses a flag (is_leaf) to differentiate node types.
Avoids virtual functions or function pointers.
Memory Pool / Arena Allocation:

Instead of malloc/free per node, preallocate nodes in contiguous memory for 
cache efficiency.
Example: std::vector<KDNode> (C++) or a simple array pool in C.
Implicit Bounding Box Representation:

Instead of explicitly storing bounds in each node, compute them on-demand from 
split values while traversing the tree.
This keeps cache locality high, reduces pointer chasing, and avoids virtual 
function overhead while maintaining fast lookup/insertion.

You said:
hmm ! you can avoid storing all the coordinates by recomputing them !

one of my thoughts is that i might have a _lot_ of data points ... i guess 
that's normal in a structure like this ... i could make big heavy leaf nodes 
... hrm >( uhhhhhhh
ChatGPT said:
Yeah! If your dataset is huge, making big, heavy leaf nodes (storing multiple 
points per leaf) can improve cache locality and reduce tree depth, speeding up 
queries and insertions. This is common in B-trees, BVH trees, and even k-d 
trees with bucket leaves.

Big Leaf Node Strategy
Leaf nodes store a fixed-size array (or vector) of points instead of single 
points.
Only split a leaf when it exceeds a threshold, e.g., 32-128 points (tunable).
Tradeoff: Shallower tree = fewer pointer jumps, but bigger leaves = more linear 
scans inside them.
Would a hybrid approach help? Like small leaves near boundaries (high 
variability) and big leaves in uniform areas (low variability)? 🤔

You said:
remind me what a b-tree is, is that a generalization of bsp trees?
also BVH?

so i think when i was confused considering this one idea i had was there'd be 
some kind of optimized representation where i could consider all points as 
belonging to nodes and leaves such that each node might even have only be 2 
points wide but that storage would be optimal uhhhhh like um is it called a 
heap? where a tree is stored in a vector?

but that seems a little overoptimistic for an nd b-tree tuned for an algorithm 
that i'm not experienced in implementing.

maybe i need to consider and process that a little bit
ChatGPT said:
Quick Reminders:
B-Trees: A generalization of binary search trees where each node has multiple 
children (not just 2). They store sorted keys in large nodes and are optimized 
for disk/memory locality.
BVH (Bounding Volume Hierarchy): A tree of bounding boxes, commonly used in ray 
tracing and collision detection. Each node bounds multiple objects, reducing 
intersection tests.
Heap (Array-Based Tree Storage): Stores binary trees in a flat array, where 
parent-child relationships are determined by index math (e.g., parent at i, 
children at 2i+1, 2i+2).
Your Idea (Dense Storage of Points in a Tree-Like Manner)
You're describing something close to:

A heap-like, array-stored k-d tree (flattened for better locality).
A minimal split k-d tree, where nodes store just enough points to define splits 
while remaining compact.
Problem: A standard heap works best for strict binary trees, but k-d trees with 
adaptive splits (or even n-ary structures like B-trees) are harder to index 
efficiently in a flat array.

It might help to first sketch what “optimal storage” means for your access 
patterns:

Read-heavy? Prioritize cache-friendly layout.
Insert-heavy? Minimize restructuring costs.
Balanced? Consider hybrid approaches (flat-array leaf storage + tree-structured 
index).
Want help exploring specific tradeoffs? 😃

You said:
well honestly its mostly for fun.

the behavior of the algorithm is expected to be dense spacially-local insertion 
paired with spacially-local queries around the insertion areas, as well as 
queries around large areas that partly intersect the dense areas possibly in 
ways that subtly and frequently shift

but really it's mostly just to rebuild some skill at doing this, so maybe 
something somewhat normative :s <_< >_>
ChatGPT said:
Memory updated
That sounds like a great way to rebuild your algorithmic skills! Given your 
expected behavior (dense local insertions + localized + large-area queries), a 
normative but efficient approach might be:

k-d tree with bucketed leaves → Reduces depth & insertion overhead.
Flat array for leaves, pointer-based tree for internal nodes → Keeps cache 
efficiency while allowing flexibility.
Lazy rebalancing (only split when absolutely necessary) → Avoids frequent 
restructuring.
This keeps things practical and optimized, but still aligns with conventional 
designs. Want to sketch a first version together? 😃

You said:
i'm still getting comfortable with the design around my tensions
lets go back to bsp trees, b-trees, bvh trees, and k-d trees. could you quickly 
describe which of these terms categorize the other terms in a concise visual 
hierarchy somehow?
ChatGPT said:
Here's a concise categorization in a hierarchical format:

pgsql
Copy
Edit
Spatial Partitioning Trees  
├── BSP Tree (Binary Space Partitioning) → Recursively splits space with 
arbitrary hyperplanes.  
│   ├── k-d Tree → Special case of BSP with axis-aligned splits, cycling 
dimensions.  
│   ├── BVH (Bounding Volume Hierarchy) → Similar to BSP but groups objects 
with bounding volumes instead of strict splits.  
│  
└── B-Tree (Balanced Search Tree) → Generalized multi-way search tree for 
indexing sorted data.  
    ├── B+ Tree → Variant where all data is stored in leaves for fast range 
queries.  
Key Takeaways
BSP, k-d, and BVH deal with space partitioning (used in geometric queries).
B-Trees deal with sorted key storage & retrieval (used in databases & file 
systems).
k-d Trees are a subset of BSP, while BVH is more about bounding rather than 
strict partitioning.
Would you like me to clarify any connections?

You said:
when i say "binary tree" am i referring to a b-tree as you know it, or is it 
more an informal way of describing a bsp tree? or something else?
ChatGPT said:
When you say "binary tree," you're not referring to a B-tree—instead, it's an 
informal way of describing a BSP tree, k-d tree, or any tree where each node 
has at most two children.

Clarifications:
Binary Tree (general term) → Any tree where each node has ≤ 2 children 
(includes BSP trees, k-d trees, and binary search trees).
BSP Tree → A type of binary tree where each node partitions space into two 
regions.
B-Tree → Not a binary tree! It has multiple children per node (e.g., 3-way, 
4-way splits) and is used for database indexing, not spatial partitioning.
So if you're talking about BSP-like recursive space splits, "binary tree" makes 
sense as an informal term. But B-trees are a different beast. 😃








You’ve hit the Free plan limit for GPT-4o.
Responses will use another model until your limit resets after 11:15 AM.

Reply via email to