-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1 Aja, please try to answer the discrepancies between you loss values in text and figures,
Detlef Am 19.03.2016 um 14:25 schrieb Aja Huang: > Good stuff, Hiroshi. Looks like I don't need to answer the > questions regarding value network. :) > > Aja > > On Sat, Mar 19, 2016 at 9:23 PM, Hiroshi Yamashita > <y...@bd.mbn.or.jp> wrote: > >> What are you using for loss? >>> >> >> I use this, >> >> layers { name: "loss" type: EUCLIDEAN_LOSS bottom: "fc14" bottom: >> "label" top: "loss" } >> >> -------------------------------------------------------- name: >> "AyaNet" layers { name: "mnist" type: DATA top: "data" data_param >> { source: "train_i50_v_2k_leveldb" # backend: LMDB batch_size: >> 256 } include: { phase: TRAIN } } layers { name: "mnist" type: >> HDF5_DATA top: "label" hdf5_data_param { source: >> "/home/yss/test/train_v_2k_i50_11_only_hdf5/aya_data_list.txt" >> batch_size: 256 } include: { phase: TRAIN } } layers { name: >> "mnist" type: DATA top: "data" data_param { source: >> "test_i50_v_2k_leveldb" # backend: LMDB batch_size: 256 } >> include: { phase: TEST } } layers { name: "mnist" type: >> HDF5_DATA top: "label" hdf5_data_param { source: >> "/home/yss/test/test_v_2k_i50_11_only_hdf5/aya_data_list.txt" >> batch_size: 256 } include: { phase: TEST } } >> >> >> #this part should be the same in learning and prediction network >> layers { name: "conv1_5x5_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "data" top: "conv1" convolution_param { >> num_output: 128 kernel_size: 5 pad: 2 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu1" type: RELU bottom: "conv1" top: "conv1" } >> >> layers { name: "conv2_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv1" top: "conv2" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu2" type: RELU bottom: "conv2" top: "conv2" } >> >> layers { name: "conv3_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv2" top: "conv3" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu3" type: RELU bottom: "conv3" top: "conv3" } >> >> layers { name: "conv4_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv3" top: "conv4" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu4" type: RELU bottom: "conv4" top: "conv4" } >> >> >> layers { name: "conv5_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv4" top: "conv5" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu5" type: RELU bottom: "conv5" top: "conv5" } >> >> layers { name: "conv6_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv5" top: "conv6" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu6" type: RELU bottom: "conv6" top: "conv6" } >> >> layers { name: "conv7_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv6" top: "conv7" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu7" type: RELU bottom: "conv7" top: "conv7" } >> >> layers { name: "conv8_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv7" top: "conv8" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu8" type: RELU bottom: "conv8" top: "conv8" } >> >> layers { name: "conv9_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv8" top: "conv9" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu9" type: RELU bottom: "conv9" top: "conv9" } >> >> layers { name: "conv10_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv9" top: "conv10" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu10" type: RELU bottom: "conv10" top: "conv10" } >> >> layers { name: "conv11_3x3_128" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv10" top: "conv11" convolution_param { >> num_output: 128 kernel_size: 3 pad: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu11" type: RELU bottom: "conv11" top: "conv11" } >> >> layers { name: "conv12_1x1_1" type: CONVOLUTION blobs_lr: 1. >> blobs_lr: 2. bottom: "conv11" top: "conv12" convolution_param { >> num_output: 1 kernel_size: 1 pad: 0 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "relu12" type: RELU bottom: "conv12" top: "conv12" } >> >> layers { name: "fc13" type: INNER_PRODUCT bottom: "conv12" top: >> "fc13" inner_product_param { num_output: 256 weight_filler { >> type: "xavier" } bias_filler { type: "constant" } } } layers { >> name: "relu13" type: RELU bottom: "fc13" top: "fc13" } >> >> layers { name: "fc14" type: INNER_PRODUCT bottom: "fc13" top: >> "fc14" inner_product_param { num_output: 1 weight_filler { type: >> "xavier" } bias_filler { type: "constant" } } } layers { name: >> "tanh14" type: TANH bottom: "fc14" top: "fc14" } >> >> layers { name: "loss" type: EUCLIDEAN_LOSS bottom: "fc14" bottom: >> "label" top: "loss" } >> -------------------------------------------------------- >> >> Thanks, Hiroshi Yamashita >> >> ----- Original Message ----- From: "Detlef Schmicker" >> <d...@physik.de> To: <computer-go@computer-go.org> Sent: Saturday, >> March 19, 2016 7:41 PM Subject: Re: [Computer-go] Value Network >> >> >> >> What are you using for loss? >>> >>> this: >>> >>> layers { name: "loss4" type: EUCLIDEAN_LOSS loss_weight: 2.0 >>> bottom: "vvv" bottom: "pool2" top: "accloss4" } >>> >>> >>> ? >>> >>> Am 04.03.2016 um 16:23 schrieb Hiroshi Yamashita: >>> >>>> Hi, >>>> >>>> I tried to make Value network. >>>> >>>> "Policy network + Value network" vs "Policy network" >>>> Winrate Wins/Games 70.7% 322 / 455, 1000 playouts/move >>>> 76.6% 141 / 184, 10000 playouts/move >>>> >>>> It seems more playouts, more Value network is effetctive. >>>> Games is not enough though. Search is similar to AlphaGo. >>>> Mixing parameter lambda is 0.5. Search is synchronous. Using >>>> one GTX 980. In 10000 playouts/move, Policy network is called >>>> 175 times, Value network is called 786 times. Node Expansion >>>> threshold is 33. >>>> >>>> >>>> Value network is 13 layers, 128 filters. (5x5_128, 3x3_128 >>>> x10, 1x1_1, fully connect, tanh) Policy network is 12 layers, >>>> 256 filters. (5x5_256, 3x3_256 x10, 3x3_1), Accuracy is >>>> 50.1% >>>> >>>> For Value network, I collected 15804400 positions from >>>> 987775 games. Games are from GoGoD, tygem 9d, 22477 >>>> games http://baduk.sourceforge.net/TygemAmateur.7z KGS 4d >>>> over, 1450946 games http://www.u-go.net/gamerecords-4d/ >>>> (except handicaps games). And select 16 positions randomly >>>> from one game. One game is divided 16 game stage, and select >>>> one of each. 1st and 9th position are rotated in same >>>> symmetry. Then Aya searches with 500 playouts, with Policy >>>> network. And store winrate (-1 to +1). Komi is 7.5. This 500 >>>> playouts is around 2730 BayesElo on CGOS. >>>> >>>> I did some of this on Amazon EC2 g2.2xlarge, 11 instances. It >>>> took 2 days, and costed $54. Spot instance is reasonable. >>>> However g2.2xlarge(GRID K520), is 3x slower than GTX 980. My >>>> Pocicy network(12L 256F) takes 5.37ms(GTX 980), and >>>> 15.0ms(g2.2xlarge). Test and Traing loss are 0.00923 and >>>> 0.00778. I think there is no big overfitting. >>>> >>>> Value network is effective, but Aya has still fatal semeai >>>> weakness. >>>> >>>> Regards, Hiroshi Yamashita >>>> >>> >> _______________________________________________ Computer-go >> mailing list Computer-go@computer-go.org >> http://computer-go.org/mailman/listinfo/computer-go >> > > > > _______________________________________________ Computer-go mailing > list Computer-go@computer-go.org > http://computer-go.org/mailman/listinfo/computer-go > -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAEBAgAGBQJW7ZeFAAoJEInWdHg+Znf4RJAQAKwTOidHeQjutSUYKhNCcAcj X5LWSBg72PEGInlvS6qz3BDIlLI/ftOmQwcHpAvA+Ci91wCbiZlH7n+DI+YZqixm s1lAryvpQgp8EyhgNqH4H3URtQvbZsjaEqjIeDPA8Xiqvx+Yi0sKlH5Tbkcyhy5H 7uHb0ls0VTf0q0DOCTcwkbdOd3nfXNj0xKwZ4JMh0s5d1OE1XFRqzNjZsre2uTUN Fdj1YBOkAsW1Ja31IDwEK9eM/aoBoaxWrbnLV/1pLhhHYDwxEJvo9V9JroxN3sTR 0ll1xrNzfMAXyPY+yRk7SgYTayD8dUZKj0WbThvx389CJqnWZFtXog8HuybVLeI3 fr9PDGOx9quN07SXvdjVAjrOP01YZHfTqh31nKK4hnfH/krXpFivc/l2zs5CvkGs PtsS61wfRflUPZiiTwrnRT/sHJn8Eqw99u9GeS4v2J3of9BtnKs8JAKUL4pbXcVT 5Lfxml1stBVABAXJoPXrHyFbUkSusPoHHppaGfG+E9uBoaEGXE2xTpdXzr3u1rUv aSOvqt+Pbe4u1eboStOVtDjwOAGmrLBSu9X5HkcnvOQ6L10dS52WTkvPzB7i6Hoa RuMZIFT1iIzJ9ZHiJRx+icgEE/Kh3bObbPuCuueHH2315eaIshLqtlrj65g5M+sU r/z6Oc8pk5xRDcfTpfK5 =4Apv -----END PGP SIGNATURE----- _______________________________________________ Computer-go mailing list Computer-go@computer-go.org http://computer-go.org/mailman/listinfo/computer-go