[ https://issues.apache.org/jira/browse/HADOOP-16360?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Ladislav Jech resolved HADOOP-16360. ------------------------------------ Resolution: Won't Fix The bucket name used underscores in name, I replaced with dash and it works. > S3A NullPointerException: null uri host. This can be caused by unencoded / in > the password string > ------------------------------------------------------------------------------------------------- > > Key: HADOOP-16360 > URL: https://issues.apache.org/jira/browse/HADOOP-16360 > Project: Hadoop Common > Issue Type: Sub-task > Components: fs/s3 > Affects Versions: 3.0.3 > Reporter: Ladislav Jech > Priority: Minor > > I am experiencing very old issue appearing now again on Cloudera cluster 6.2. > I use following libraries with pyspark job: > * > /opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/hadoop/hadoop-common-3.0.0-cdh6.2.0.jar > * > /opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/hadoop/hadoop-aws-3.0.0-cdh6.2.0.jar > While trying to write DF to S3 as CSV I get following error: > {code:java} > java.lang.NullPointerException: null uri host. This can be caused by > unencoded / in the password string > at java.util.Objects.requireNonNull(Objects.java:228) > at > org.apache.hadoop.fs.s3native.S3xLoginHelper.buildFSURI(S3xLoginHelper.java:69) > at org.apache.hadoop.fs.s3a.S3AFileSystem.setUri(S3AFileSystem.java:467) > at > org.apache.hadoop.fs.s3a.S3AFileSystem.initialize(S3AFileSystem.java:234) > at > org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:3288) > at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:123) > at > org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:3337) > at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:3305) > at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:476) > at org.apache.hadoop.fs.Path.getFileSystem(Path.java:361) > at > org.apache.spark.sql.execution.datasources.DataSource.planForWritingFileFormat(DataSource.scala:423) > at > org.apache.spark.sql.execution.datasources.DataSource.planForWriting(DataSource.scala:523) > at > org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:281) > at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:270) > at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:228) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at py4j.Gateway.invoke(Gateway.java:282) > at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at py4j.commands.CallCommand.execute(CallCommand.java:79) > at py4j.GatewayConnection.run(GatewayConnection.java:238) > at java.lang.Thread.run(Thread.java:748) > // code placeholder > {code} > I specify secret key via configuration, not via path (as older bugs reported) > and on top of that my Secret key doesn't have any slash, but access key has > dash '-' character and > AWS_HOST_BASE I define with '[http://host.domain.suffix/'] form > My code doesn't use secret key in s3 path, but as follows: > {code:java} > sparkSession = SparkSession.builder.getOrCreate() > sparkContext = sparkSession.sparkContext > #sparkContext._jsc.hadoopConfiguration().set("fs.s3a.multipart.size", > "1000000") > sparkContext._jsc.hadoopConfiguration().set("fs.s3a.access.key", > AWS_ACCESS_KEY_ID) > sparkContext._jsc.hadoopConfiguration().set("fs.s3a.secret.key", > AWS_SECRET_ACCESS_KEY) > sparkContext._jsc.hadoopConfiguration().set("fs.s3a.endpoint", AWS_HOST_BASE) > sparkContext._jsc.hadoopConfiguration().set("fs.s3.access.key", > AWS_ACCESS_KEY_ID) > sparkContext._jsc.hadoopConfiguration().set("fs.s3.secret.key", > AWS_SECRET_ACCESS_KEY) > sparkContext._jsc.hadoopConfiguration().set("fs.s3.endpoint", AWS_HOST_BASE) > sparkContext._jsc.hadoopConfiguration().set("fs.s3n.access.key", > AWS_ACCESS_KEY_ID) > sparkContext._jsc.hadoopConfiguration().set("fs.s3n.secret.key", > AWS_SECRET_ACCESS_KEY) > sparkContext._jsc.hadoopConfiguration().set("fs.s3n.endpoint", AWS_HOST_BASE) > sqlContext = SQLContext(sparkSession.sparkContext) > # log4j = sparkContext._jvm.org.apache.log4j > # pylint: disable=W0212 > logger = > sparkContext._jvm.org.apache.log4j.LogManager.getLogger("OracleToS3") > # logger = log4j.LogManager.getlogger(__name__) > sparkContext.setLogLevel('INFO') > logger.info("Going to process Oracle tables...") > for table in Source.table_list: > logger.info("Reading oracle table into dataframe") > oracle_table = sparkContext.read \ > .format("jdbc") \ > .option("url", Source.jdbc_string) \ > .option("dbtable", table) \ > .option("user", Source.user) \ > .option("password", Source.password) \ > .option("driver", "oracle.jdbc.driver.OracleDriver") \ > .load() > # Display schema > logger.info("Display table schema") > oracle_table.show() > logger.info("Display table top 5") > oracle_table.head(5) > output_file = "s3a://201906/" + "11/" + table + "_" + > time.strftime("%Y%m%d_%H%M%S") +".csv" > logger.info("Writing table into S3 to file: " + output_file) > oracle_table\ > .repartition(1)\ > .write \ > .mode("overwrite")\ > .format("csv")\ > .option("header","true") \ > .save("s3a://201906/" + "11/" + table + "_" + > time.strftime("%Y%m%d_%H%M%S") +".csv") > {code} -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: common-dev-unsubscr...@hadoop.apache.org For additional commands, e-mail: common-dev-h...@hadoop.apache.org