[ 
https://issues.apache.org/jira/browse/HADOOP-2560?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Allen Wittenauer resolved HADOOP-2560.
--------------------------------------

    Resolution: Duplicate

This appears to predate MFIF/CFIF, as introduced by HADOOP-4565 which appears 
to fix the issue.  I'm going to close this out as resolved as a result.

> Processing multiple input splits per mapper task
> ------------------------------------------------
>
>                 Key: HADOOP-2560
>                 URL: https://issues.apache.org/jira/browse/HADOOP-2560
>             Project: Hadoop Common
>          Issue Type: Bug
>            Reporter: Runping Qi
>            Assignee: dhruba borthakur
>         Attachments: multipleSplitsPerMapper.patch
>
>
> Currently, an input split contains a consecutive chunk of input file, which 
> by default, corresponding to a DFS block.
> This may lead to a large number of mapper tasks if the input data is large. 
> This leads to the following problems:
> 1. Shuffling cost: since the framework has to move M * R map output segments 
> to the nodes running reducers, 
> larger M means larger shuffling cost.
> 2. High JVM initialization overhead
> 3. Disk fragmentation: larger number of map output files means lower read 
> throughput for accessing them.
> Ideally, you want to keep the number of mappers to no more than 16 times the 
> number of  nodes in the cluster.
> To achive that, we can increase the input split size. However, if a split 
> span over more than one dfs block,
> you lose the data locality scheduling benefits.
> One way to address this problem is to combine multiple input blocks with the 
> same rack into one split.
> If in average we combine B blocks into one split, then we will reduce the 
> number of mappers by a factor of B.
> Since all the blocks for one mapper share a rack, thus we can benefit from 
> rack-aware scheduling.
> Thoughts?



--
This message was sent by Atlassian JIRA
(v6.2#6252)

Reply via email to