This is an automated email from the ASF dual-hosted git repository.
yiconghuang pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/texera.git
The following commit(s) were added to refs/heads/main by this push:
new 7cf3b76f09 chore(dep): Bump `numpy` version to 2.1.0 (#4098)
7cf3b76f09 is described below
commit 7cf3b76f09e09834b8669693549a7727ae99eb47
Author: Yicong Huang <[email protected]>
AuthorDate: Mon Dec 1 00:26:54 2025 -0800
chore(dep): Bump `numpy` version to 2.1.0 (#4098)
### What changes were proposed in this PR?
Bump numpy version to 2.1.0 to be [compatible with Python
3.13](https://numpy.org/news/#numpy-210-released).
### Any related issues, documentation, discussions?
Closes #4097
### How was this PR tested?
CI
### Was this PR authored or co-authored using generative AI tooling?
No
---------
Signed-off-by: Yicong Huang <[email protected]>
---
amber/requirements.txt | 2 +-
amber/src/main/python/core/models/test_tuple.py | 4 ++--
2 files changed, 3 insertions(+), 3 deletions(-)
diff --git a/amber/requirements.txt b/amber/requirements.txt
index e2db1342ab..7e2c5304ec 100644
--- a/amber/requirements.txt
+++ b/amber/requirements.txt
@@ -16,7 +16,7 @@
# under the License.
wheel==0.41.2
-numpy==1.26.4
+numpy==2.1.0
pandas==2.2.3
flake8==7.1.1
Flake8-pyproject==1.2.3
diff --git a/amber/src/main/python/core/models/test_tuple.py
b/amber/src/main/python/core/models/test_tuple.py
index 53f1590fe3..bfce7bb94f 100644
--- a/amber/src/main/python/core/models/test_tuple.py
+++ b/amber/src/main/python/core/models/test_tuple.py
@@ -19,8 +19,8 @@ import datetime
import pandas
import pyarrow
import pytest
+import numpy as np
from copy import deepcopy
-from numpy import NaN
from core.models import Tuple, ArrowTableTupleProvider
from core.models.schema.schema import Schema
@@ -123,7 +123,7 @@ class TestTuple:
def test_finalize_tuple(self):
tuple_ = Tuple(
- {"name": "texera", "age": 21, "scores": [85, 94, 100], "height":
NaN}
+ {"name": "texera", "age": 21, "scores": [85, 94, 100], "height":
np.nan}
)
schema = Schema(
raw_schema={