This is an automated email from the ASF dual-hosted git repository.

jiayu pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/sedona.git


The following commit(s) were added to refs/heads/master by this push:
     new 59fc2e0c07 [GH-2407] Auto-detect raster columns in 
SedonaUtils.display_image (#2633)
59fc2e0c07 is described below

commit 59fc2e0c07d04cc25dd13604249bb1591b055fa3
Author: Jia Yu <[email protected]>
AuthorDate: Mon Feb 9 03:55:04 2026 -0700

    [GH-2407] Auto-detect raster columns in SedonaUtils.display_image (#2633)
---
 docs/api/sql/Raster-loader.md                     |  3 +++
 docs/api/sql/Raster-map-algebra.md                |  3 +++
 docs/api/sql/Raster-operators.md                  |  3 +++
 docs/api/sql/Raster-visualizer.md                 | 19 +++++++++----
 docs/tutorial/raster.md                           | 20 ++++++++++++++
 python/sedona/spark/raster_utils/SedonaUtils.py   | 33 +++++++++++++++++++++++
 python/tests/raster_viz_utils/test_sedonautils.py | 25 ++++++++++++++---
 7 files changed, 97 insertions(+), 9 deletions(-)

diff --git a/docs/api/sql/Raster-loader.md b/docs/api/sql/Raster-loader.md
index f41d6c6ae9..d0df8c2231 100644
--- a/docs/api/sql/Raster-loader.md
+++ b/docs/api/sql/Raster-loader.md
@@ -22,6 +22,9 @@
 
 The raster loader of Sedona leverages Spark built-in binary data source and 
works with several RS constructors to produce Raster type. Each raster is a row 
in the resulting DataFrame and stored in a `Raster` format.
 
+!!!tip
+    After loading rasters, you can quickly visualize them in a Jupyter 
notebook using `SedonaUtils.display_image(df)`. It automatically detects raster 
columns and renders them as images. See [Raster visualizer 
docs](Raster-visualizer.md#display-raster-in-jupyter) for details.
+
 By default, these functions uses lon/lat order since `v1.5.0`. Before, it used 
lat/lon order.
 
 ## Step 1: Load raster to a binary DataFrame
diff --git a/docs/api/sql/Raster-map-algebra.md 
b/docs/api/sql/Raster-map-algebra.md
index 70b7e52eef..a8431f9dd6 100644
--- a/docs/api/sql/Raster-map-algebra.md
+++ b/docs/api/sql/Raster-map-algebra.md
@@ -21,6 +21,9 @@
 
 Map algebra is a way to perform raster calculations using mathematical 
expressions. The expression can be a simple arithmetic operation or a complex 
combination of multiple operations. The expression can be applied to a single 
raster band or multiple raster bands. The result of the expression is a new 
raster.
 
+!!!tip
+    To visually inspect the result of a map algebra operation in a Jupyter 
notebook, use `SedonaUtils.display_image(df)`. It automatically detects raster 
columns and renders them as images. See [Raster visualizer 
docs](Raster-visualizer.md#display-raster-in-jupyter) for details.
+
 Apache Sedona provides two ways to perform map algebra operations:
 
 1. Using the `RS_MapAlgebra` function.
diff --git a/docs/api/sql/Raster-operators.md b/docs/api/sql/Raster-operators.md
index 2408ded8cf..7124286d3c 100644
--- a/docs/api/sql/Raster-operators.md
+++ b/docs/api/sql/Raster-operators.md
@@ -17,6 +17,9 @@
  under the License.
  -->
 
+!!!tip
+    To quickly visualize raster data in a Jupyter notebook, use 
`SedonaUtils.display_image(df)`. It automatically detects raster columns and 
renders them as images. See [Raster visualizer 
docs](Raster-visualizer.md#display-raster-in-jupyter) for details.
+
 ## Pixel Functions
 
 ### RS_PixelAsCentroid
diff --git a/docs/api/sql/Raster-visualizer.md 
b/docs/api/sql/Raster-visualizer.md
index ce58eb986c..f8bcab5eac 100644
--- a/docs/api/sql/Raster-visualizer.md
+++ b/docs/api/sql/Raster-visualizer.md
@@ -71,21 +71,30 @@ Output:
 "<img 
src=\"\"
 width=\"200\" />";
 ```
 
-!!!Tip
-    RS_AsImage can be paired with SedonaUtils.display_image(df) wrapper inside 
a Jupyter notebook to directly print the raster as an image in the output, 
where the 'df' parameter is the dataframe containing the HTML data provided by 
RS_AsImage
+### Display raster in Jupyter
 
-Example:
+Introduction: `SedonaUtils.display_image(df)` is a Python wrapper that renders 
raster images directly in a Jupyter notebook. It automatically detects raster 
columns in the DataFrame and applies `RS_AsImage` under the hood, so you don't 
need to call `RS_AsImage` yourself. You can also pass a DataFrame with 
pre-applied `RS_AsImage` HTML.
+
+Since: `v1.7.0` (auto-detection of raster columns since `v1.9.0`)
+
+Example — direct raster display (recommended):
 
 ```python
 from sedona.spark import SedonaUtils
 
-# Or from sedona.spark import *
-
 df = (
     sedona.read.format("binaryFile")
     .load(DATA_DIR + "raster.tiff")
     .selectExpr("RS_FromGeoTiff(content) as raster")
 )
+
+# Pass the raw raster DataFrame directly — RS_AsImage is applied automatically
+SedonaUtils.display_image(df)
+```
+
+Example — with explicit RS_AsImage:
+
+```python
 htmlDF = df.selectExpr("RS_AsImage(raster, 500) as raster_image")
 SedonaUtils.display_image(htmlDF)
 ```
diff --git a/docs/tutorial/raster.md b/docs/tutorial/raster.md
index bb776b6b3b..717b688ab5 100644
--- a/docs/tutorial/raster.md
+++ b/docs/tutorial/raster.md
@@ -472,6 +472,17 @@ The output looks like this:
 
 ![Output](../image/DisplayImage.png)
 
+!!!tip
+    In a Jupyter notebook, use `SedonaUtils.display_image` to render rasters 
directly — no need to call RS_AsImage manually:
+
+    ```python
+    from sedona.spark import SedonaUtils
+
+    SedonaUtils.display_image(rasterDf)
+    ```
+
+    See [Display raster in 
Jupyter](../api/sql/Raster-visualizer.md#display-raster-in-jupyter) for details.
+
 ### 2-D Matrix
 
 Sedona offers an API to visualize raster data that is not sufficient for the 
other APIs mentioned above.
@@ -531,6 +542,15 @@ Please refer to [Raster writer 
docs](../api/sql/Raster-writer.md) for more detai
 Sedona allows collecting Dataframes with raster columns and working with them 
locally in Python since `v1.6.0`.
 The raster objects are represented as `SedonaRaster` objects in Python, which 
can be used to perform raster operations.
 
+!!!tip
+    If you just want to quickly visualize a raster in Jupyter, use 
`SedonaUtils.display_image(df)` instead of collecting the DataFrame:
+
+    ```python
+    from sedona.spark import SedonaUtils
+
+    SedonaUtils.display_image(df_raster)
+    ```
+
 ```python
 df_raster = (
     sedona.read.format("binaryFile")
diff --git a/python/sedona/spark/raster_utils/SedonaUtils.py 
b/python/sedona/spark/raster_utils/SedonaUtils.py
index f292bd490a..11dba5868f 100644
--- a/python/sedona/spark/raster_utils/SedonaUtils.py
+++ b/python/sedona/spark/raster_utils/SedonaUtils.py
@@ -21,7 +21,40 @@ from sedona.spark.maps.SedonaMapUtils import SedonaMapUtils
 class SedonaUtils:
     @classmethod
     def display_image(cls, df):
+        """Display raster images in a Jupyter notebook.
+
+        Accepts DataFrames with either:
+        - A raster column (GridCoverage2D) — auto-applies RS_AsImage
+        - An HTML image column from RS_AsImage() — renders directly
+
+        Falls back to the SedonaMapUtils HTML table path for other DataFrames.
+        """
         from IPython.display import HTML, display
 
+        schema = df.schema
+
+        # Detect raster UDT columns and auto-apply RS_AsImage.
+        # Without this, passing a raw raster DataFrame to the fallback path
+        # causes __convert_to_gdf_or_pdf__ to Arrow-serialize the full raster
+        # grid, which hangs for large rasters (e.g., 1400x800).
+        raster_cols = [
+            f.name
+            for f in schema.fields
+            if hasattr(f.dataType, "typeName") and f.dataType.typeName() == 
"rastertype"
+        ]
+        if raster_cols:
+            # Replace each raster column with its RS_AsImage() HTML 
representation,
+            # preserving all other columns in the DataFrame.
+            select_exprs = []
+            for f in schema.fields:
+                col_name_escaped = f.name.replace("`", "``")
+                if f.name in raster_cols:
+                    select_exprs.append(
+                        f"RS_AsImage(`{col_name_escaped}`) as 
`{col_name_escaped}`"
+                    )
+                else:
+                    select_exprs.append(f"`{col_name_escaped}`")
+            df = df.selectExpr(*select_exprs)
+
         pdf = SedonaMapUtils.__convert_to_gdf_or_pdf__(df, rename=False)
         display(HTML(pdf.to_html(escape=False)))
diff --git a/python/tests/raster_viz_utils/test_sedonautils.py 
b/python/tests/raster_viz_utils/test_sedonautils.py
index f3c8dae994..2f8993b593 100644
--- a/python/tests/raster_viz_utils/test_sedonautils.py
+++ b/python/tests/raster_viz_utils/test_sedonautils.py
@@ -26,12 +26,29 @@ class TestSedonaUtils(TestBase):
         raster_bin_df = self.spark.read.format("binaryFile").load(
             world_map_raster_input_location
         )
-        raster_bin_df.createOrReplaceTempView("raster_binary_table")
-        raster_df = self.spark.sql(
-            "SELECT RS_FromGeotiff(content) as raster from raster_binary_table"
-        )
+        raster_df = raster_bin_df.selectExpr("RS_FromGeotiff(content) as 
raster")
         raster_image_df = raster_df.selectExpr("RS_AsImage(raster) as 
rast_img")
         html_call = SedonaUtils.display_image(raster_image_df)
         assert (
             html_call is None
         )  # just test that this function was called and returned no output
+
+    def test_display_image_raw_raster(self):
+        """Test that display_image auto-detects raster columns and applies 
RS_AsImage."""
+        raster_bin_df = self.spark.read.format("binaryFile").load(
+            world_map_raster_input_location
+        )
+        raster_df = raster_bin_df.selectExpr("RS_FromGeotiff(content) as 
raster")
+        html_call = SedonaUtils.display_image(raster_df)
+        assert html_call is None
+
+    def test_display_image_preserves_non_raster_columns(self):
+        """Test that non-raster columns are preserved alongside raster 
columns."""
+        raster_bin_df = self.spark.read.format("binaryFile").load(
+            world_map_raster_input_location
+        )
+        raster_df = raster_bin_df.selectExpr(
+            "path", "RS_FromGeotiff(content) as raster"
+        )
+        html_call = SedonaUtils.display_image(raster_df)
+        assert html_call is None

Reply via email to