This is an automated email from the ASF dual-hosted git repository.
jiayu pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/sedona.git
The following commit(s) were added to refs/heads/master by this push:
new ad00427584 [GH-1905] Increment Spark minor version in Databricks setup
guide (#1912)
ad00427584 is described below
commit ad00427584fc82d8c9644ff64ffd0c9bdf1734d2
Author: Kristin Cowalcijk <[email protected]>
AuthorDate: Tue Apr 8 00:21:45 2025 +0800
[GH-1905] Increment Spark minor version in Databricks setup guide (#1912)
---
docs/setup/databricks.md | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/docs/setup/databricks.md b/docs/setup/databricks.md
index ff51a9eb70..75bdc1beb7 100644
--- a/docs/setup/databricks.md
+++ b/docs/setup/databricks.md
@@ -19,7 +19,7 @@
In Databricks advanced editions, you need to install Sedona via [cluster
init-scripts](https://docs.databricks.com/clusters/init-scripts.html) as
described below. Sedona is not guaranteed to be 100% compatible with
`Databricks photon acceleration`. Sedona requires Spark internal APIs to inject
many optimization strategies, which sometimes is not accessible in `Photon`.
-The following steps use DBR including Apache Spark 3.4.x as an example. Please
change the Spark version according to your DBR version. Please pay attention to
the Spark version postfix and Scala version postfix on our [Maven Coordinate
page](maven-coordinates.md). Databricks Spark and Apache Spark's compatibility
can be found
[here](https://docs.databricks.com/en/release-notes/runtime/index.html).
+The following steps use DBR including Apache Spark 3.5.x as an example. Please
change the Spark version according to your DBR version. Please pay attention to
the Spark version postfix and Scala version postfix on our [Maven Coordinate
page](maven-coordinates.md). Databricks Spark and Apache Spark's compatibility
can be found
[here](https://docs.databricks.com/en/release-notes/runtime/index.html).
!!! bug
Databricks Runtime 16.2 (non-LTS) introduces a change in the json4s
dependency, which may lead to compatibility issues with Apache Sedona. We
recommend using a currently supported LTS version, such as Databricks Runtime
15.4 LTS or 14.3 LTS, to ensure stability. A patch will be provided once an
official Databricks Runtime 16 LTS version is released.
@@ -36,7 +36,7 @@ mkdir -p /Workspace/Shared/sedona/{{ sedona.current_version }}
# Download the dependencies from Maven into DBFS
curl -o /Workspace/Shared/sedona/{{ sedona.current_version
}}/geotools-wrapper-{{ sedona.current_geotools }}.jar
"https://repo1.maven.org/maven2/org/datasyslab/geotools-wrapper/{{
sedona.current_geotools }}/geotools-wrapper-{{ sedona.current_geotools }}.jar"
-curl -o /Workspace/Shared/sedona/{{ sedona.current_version
}}/sedona-spark-shaded-3.4_2.12-{{ sedona.current_version }}.jar
"https://repo1.maven.org/maven2/org/apache/sedona/sedona-spark-shaded-3.4_2.12/{{
sedona.current_version }}/sedona-spark-shaded-3.4_2.12-{{
sedona.current_version }}.jar"
+curl -o /Workspace/Shared/sedona/{{ sedona.current_version
}}/sedona-spark-shaded-3.5_2.12-{{ sedona.current_version }}.jar
"https://repo1.maven.org/maven2/org/apache/sedona/sedona-spark-shaded-3.5_2.12/{{
sedona.current_version }}/sedona-spark-shaded-3.5_2.12-{{
sedona.current_version }}.jar"
```
Of course, you can also do the steps above manually.