[ 
https://issues.apache.org/jira/browse/HUDI-3184?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Well Tang reassigned HUDI-3184:
-------------------------------

            Attachment: 3.png
                        2.png
                        1.png
              Assignee: Well Tang
           Description: 
{*}Problem overview{*}:

Steps to reproduce the behavior:

①The spark engine is used to write data into the hoodie table(PS: There are 
timestamp type columns in the dataset field).

②Use the Flink engine to read the hoodie table written in step 1.

 

*Expected behavior*

Caused by: java.lang.IllegalArgumentException: Avro does not support TIMESTAMP 
type with precision: 6, it only supports precision less than 3.
at 
org.apache.hudi.util.AvroSchemaConverter.convertToSchema(AvroSchemaConverter.java:221)
 ~...
at 
org.apache.hudi.util.AvroSchemaConverter.convertToSchema(AvroSchemaConverter.java:263)
 ~...
at 
org.apache.hudi.util.AvroSchemaConverter.convertToSchema(AvroSchemaConverter.java:169)
 ~...
at 
org.apache.hudi.table.HoodieTableFactory.inferAvroSchema(HoodieTableFactory.java:239)
 ~...
at 
org.apache.hudi.table.HoodieTableFactory.setupConfOptions(HoodieTableFactory.java:155)
 ~...
at 
org.apache.hudi.table.HoodieTableFactory.createDynamicTableSource(HoodieTableFactory.java:65)
 ~...

 

*Environment Description*

  Hudi version : 0.11.0-SNAPSHOT

  Spark version : 3.1.2

  Flink version : 1.13.1

  Hive version : None

  Hadoop version : 2.9.2

  Storage (HDFS/S3/GCS..) : HDFS

  Running on Docker? (yes/no) : None

 

*Additional context*

We are using hoodie as a data lake to deliver projects to customers. We found 
such application scenarios: write data to the hoodie table through the spark 
engine, and then read data from the hoodie table through the finlk engine.


It should be noted that the above exception will be caused by how to write to 
the column containing the timestamp in the dataset.


In order to simplify the description of the problem, we summarize the problem 
into the following steps:

【step-1】Mock data:
{code:java}
/home/deploy/spark-3.1.2-bin-hadoop2.7/bin/spark-shell \
--driver-class-path /home/workflow/apache-hive-2.3.8-bin/conf/ \
--master spark://2-120:7077 \
--executor-memory 4g \
--driver-memory 4g \
--num-executors 4 \
--total-executor-cores 4 \
--name test \
--jars 
/home/deploy/spark-3.1.2-bin-hadoop2.7/jars/hudi-spark3-bundle_2.12-0.11.0-SNAPSHOT.jar,/home/deploy/spark-3.1.2-bin-hadoop2.7/jars/spark-avro_2.12-3.1.2.jar
 \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.sql.legacy.parquet.datetimeRebaseModeInRead=CORRECTED \
--conf spark.sql.hive.convertMetastoreParquet=false {code}
 
{code:java}
val df = spark.sql("select 1 as id, 'A' as name, current_timestamp as dt")

df.write.format("hudi").
  option("hoodie.datasource.write.recordkey.field", "id").
  option("hoodie.datasource.write.precombine.field", "id").
  option("hoodie.datasource.write.keygenerator.class", 
"org.apache.hudi.keygen.NonpartitionedKeyGenerator").
  option("hoodie.upsert.shuffle.parallelism", "2").
  option("hoodie.table.name", "timestamp_table").
  mode("append").
  save("/hudi/suite/data_type_timestamp_table")

spark.read.format("hudi").load("/hudi/suite/data_type_timestamp_table").show(false)
 {code}
 

 

【step-2】Consumption data through flink:

 
{code:java}
bin/sql-client.sh embedded -j lib/hudi-flink-bundle_2.12-0.11.0-SNAPSHOT.jar 
{code}
 

 
{code:java}
create table data_type_timestamp_table (
  `id` INT,
  `name` STRING,
  `dt` TIMESTAMP(6)
) with (
  'connector' = 'hudi',
  'hoodie.table.name' = 'data_type_timestamp_table',
  'read.streaming.enabled' = 'true',
  'hoodie.datasource.write.recordkey.field' = 'id',
  'path' = '/hudi/suite/data_type_timestamp_table',
  'read.streaming.check-interval' = '10',
  'table.type' = 'COPY_ON_WRITE',
  'write.precombine.field' = 'id'
);

select * from data_type_timestamp_table; {code}
As shown below:

!1.png!

If we changge timestamp (6) to timestamp (3),the result is as follows:

!2.png!

The data can be found here, but the display is incorrect!

After checking It is found in the Hoodie directory that the spark write 
timestamp type is timestamp micros:

!3.png!

 

However, the timestamp type of hook reading and writing Hoodie data is 
timestamp-millis!Therefore, it is problematic for us to read and write 
timestamp types through Spark and Flink computing engines. We hope that 
hudi-flink module needs to support timestamp micros and cannot lose time 
accuracy.

 
                Labels: pull-request-available  (was: )
    Remaining Estimate: 120h
     Original Estimate: 120h

> hudi-flink support timestamp-micros
> -----------------------------------
>
>                 Key: HUDI-3184
>                 URL: https://issues.apache.org/jira/browse/HUDI-3184
>             Project: Apache Hudi
>          Issue Type: Improvement
>          Components: Flink Integration
>            Reporter: Well Tang
>            Assignee: Well Tang
>            Priority: Major
>              Labels: pull-request-available
>             Fix For: 0.11.0
>
>         Attachments: 1.png, 2.png, 3.png
>
>   Original Estimate: 120h
>  Remaining Estimate: 120h
>
> {*}Problem overview{*}:
> Steps to reproduce the behavior:
> ①The spark engine is used to write data into the hoodie table(PS: There are 
> timestamp type columns in the dataset field).
> ②Use the Flink engine to read the hoodie table written in step 1.
>  
> *Expected behavior*
> Caused by: java.lang.IllegalArgumentException: Avro does not support 
> TIMESTAMP type with precision: 6, it only supports precision less than 3.
> at 
> org.apache.hudi.util.AvroSchemaConverter.convertToSchema(AvroSchemaConverter.java:221)
>  ~...
> at 
> org.apache.hudi.util.AvroSchemaConverter.convertToSchema(AvroSchemaConverter.java:263)
>  ~...
> at 
> org.apache.hudi.util.AvroSchemaConverter.convertToSchema(AvroSchemaConverter.java:169)
>  ~...
> at 
> org.apache.hudi.table.HoodieTableFactory.inferAvroSchema(HoodieTableFactory.java:239)
>  ~...
> at 
> org.apache.hudi.table.HoodieTableFactory.setupConfOptions(HoodieTableFactory.java:155)
>  ~...
> at 
> org.apache.hudi.table.HoodieTableFactory.createDynamicTableSource(HoodieTableFactory.java:65)
>  ~...
>  
> *Environment Description*
>   Hudi version : 0.11.0-SNAPSHOT
>   Spark version : 3.1.2
>   Flink version : 1.13.1
>   Hive version : None
>   Hadoop version : 2.9.2
>   Storage (HDFS/S3/GCS..) : HDFS
>   Running on Docker? (yes/no) : None
>  
> *Additional context*
> We are using hoodie as a data lake to deliver projects to customers. We found 
> such application scenarios: write data to the hoodie table through the spark 
> engine, and then read data from the hoodie table through the finlk engine.
> It should be noted that the above exception will be caused by how to write to 
> the column containing the timestamp in the dataset.
> In order to simplify the description of the problem, we summarize the problem 
> into the following steps:
> 【step-1】Mock data:
> {code:java}
> /home/deploy/spark-3.1.2-bin-hadoop2.7/bin/spark-shell \
> --driver-class-path /home/workflow/apache-hive-2.3.8-bin/conf/ \
> --master spark://2-120:7077 \
> --executor-memory 4g \
> --driver-memory 4g \
> --num-executors 4 \
> --total-executor-cores 4 \
> --name test \
> --jars 
> /home/deploy/spark-3.1.2-bin-hadoop2.7/jars/hudi-spark3-bundle_2.12-0.11.0-SNAPSHOT.jar,/home/deploy/spark-3.1.2-bin-hadoop2.7/jars/spark-avro_2.12-3.1.2.jar
>  \
> --conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
> --conf spark.sql.legacy.parquet.datetimeRebaseModeInRead=CORRECTED \
> --conf spark.sql.hive.convertMetastoreParquet=false {code}
>  
> {code:java}
> val df = spark.sql("select 1 as id, 'A' as name, current_timestamp as dt")
> df.write.format("hudi").
>   option("hoodie.datasource.write.recordkey.field", "id").
>   option("hoodie.datasource.write.precombine.field", "id").
>   option("hoodie.datasource.write.keygenerator.class", 
> "org.apache.hudi.keygen.NonpartitionedKeyGenerator").
>   option("hoodie.upsert.shuffle.parallelism", "2").
>   option("hoodie.table.name", "timestamp_table").
>   mode("append").
>   save("/hudi/suite/data_type_timestamp_table")
> spark.read.format("hudi").load("/hudi/suite/data_type_timestamp_table").show(false)
>  {code}
>  
>  
> 【step-2】Consumption data through flink:
>  
> {code:java}
> bin/sql-client.sh embedded -j lib/hudi-flink-bundle_2.12-0.11.0-SNAPSHOT.jar 
> {code}
>  
>  
> {code:java}
> create table data_type_timestamp_table (
>   `id` INT,
>   `name` STRING,
>   `dt` TIMESTAMP(6)
> ) with (
>   'connector' = 'hudi',
>   'hoodie.table.name' = 'data_type_timestamp_table',
>   'read.streaming.enabled' = 'true',
>   'hoodie.datasource.write.recordkey.field' = 'id',
>   'path' = '/hudi/suite/data_type_timestamp_table',
>   'read.streaming.check-interval' = '10',
>   'table.type' = 'COPY_ON_WRITE',
>   'write.precombine.field' = 'id'
> );
> select * from data_type_timestamp_table; {code}
> As shown below:
> !1.png!
> If we changge timestamp (6) to timestamp (3),the result is as follows:
> !2.png!
> The data can be found here, but the display is incorrect!
> After checking It is found in the Hoodie directory that the spark write 
> timestamp type is timestamp micros:
> !3.png!
>  
> However, the timestamp type of hook reading and writing Hoodie data is 
> timestamp-millis!Therefore, it is problematic for us to read and write 
> timestamp types through Spark and Flink computing engines. We hope that 
> hudi-flink module needs to support timestamp micros and cannot lose time 
> accuracy.
>  



--
This message was sent by Atlassian Jira
(v8.20.1#820001)

Reply via email to