cafelo-pfdrive commented on issue #4873:
URL: https://github.com/apache/hudi/issues/4873#issuecomment-1060892801


   Hello @Gatsby-Lee 
   Here it goes the Hudi (MOR) configuration
   
   commonConfig = {
           'className' : 'org.apache.hudi', 
           "path": "s3://poc-lake-silver/interval_mor_hour/data/",
           'hoodie.upsert.shuffle.parallelism': 160,
           'hoodie.simple.index.parallelism' : 320,
           'hoodie.datasource.write.operation': 'upsert',
           'hoodie.table.type': 'MERGE_ON_READ',
           'hoodie.index.type': 'SIMPLE'
       }
   
   partitionDataConfig = {
       'hoodie.datasource.hive_sync.partition_extractor_class': 
'org.apache.hudi.hive.MultiPartKeysValueExtractor'}
                     
   dataSourceWriteConfig = {
       'hoodie.datasource.write.table.type': 'MERGE_ON_READ',    
       'hoodie.datasource.write.keygenerator.class': 
'org.apache.hudi.keygen.ComplexKeyGenerator',
       'hoodie.datasource.write.precombine.field': 'ingestionutc', 
       'hoodie.datasource.write.partitionpath.field': 
'plantuid,intervaldate,intervalhour',
       'hoodie.datasource.write.recordkey.field': 'intervalutc,asset,attribute' 
       }
   dataSourceHiveConfig = {
       'hoodie.datasource.hive_sync.use_jdbc':'false', 
       'hoodie.datasource.hive_sync.enable': 'true',
       'hoodie.datasource.hive_sync.database': 'db_swat_lake_silver', 
       'hoodie.datasource.hive_sync.table': 'interval_mor_hour',
      'hoodie.datasource.hive_sync.partition_fields': 
'plantuid,intervaldate,intervalhour' 
       }
       
   dataTableConfig = {
       'hoodie.table.keygenerator.class': 
'org.apache.hudi.keygen.ComplexKeyGenerator',
       'hoodie.database.name': 'db_swat_lake_silver', 
       'hoodie.table.name': 'interval_mor_hour', 
        }
   
   Please see also the Spark Session configuration
   spark = 
SparkSession.builder.config('spark.serializer','org.apache.spark.serializer.KryoSerializer')
 \
                               .config('spark.driver.memory','10') \
                               .config('spark.executor.memory', '8g') \
                               .config('spark.executor.cores', '4') \
                               .config('spark.executor.instances', '160') \
                               .config('spark.driver.memoryOverhead','1024') \
                               .config('spark.executor.memoryOverhead','1024') \
                               .config('spark.default.parallelism','160') \
                               .config('spark.sql.shuffle.partitions','320') \
                               .config('spark.memory.storageFraction','0.2') \
                               
.config('spark.sql.hive.convertMetastoreParquet','false').getOrCreate()
   
   Running the job in AWS Glue with 20 GPUs 
   each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk)


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to