This is an automated email from the ASF dual-hosted git repository.

englefly pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/doris.git


The following commit(s) were added to refs/heads/master by this push:
     new f95d728d3e [shape](nereids) TPCDS check all query shape, except ds64 
(#21742)
f95d728d3e is described below

commit f95d728d3e83074ed6c09d5e31f8f3aadf8fac0d
Author: minghong <engle...@gmail.com>
AuthorDate: Fri Jul 14 16:56:46 2023 +0800

    [shape](nereids) TPCDS check all query shape, except ds64 (#21742)
    
    there is a known bug on ds64 analyze. add ds 64 shape check latter
---
 .../apache/doris/statistics/ColumnStatistic.java   |   3 -
 .../nereids_tpcds_shape_sf100_p0/shape/query16.out |   6 +-
 .../nereids_tpcds_shape_sf100_p0/shape/query17.out |  61 +++---
 .../nereids_tpcds_shape_sf100_p0/shape/query25.out |  63 +++---
 .../nereids_tpcds_shape_sf100_p0/shape/query28.out |  72 +++---
 .../nereids_tpcds_shape_sf100_p0/shape/query29.out |  12 +-
 .../nereids_tpcds_shape_sf100_p0/shape/query39.out |   2 +-
 .../nereids_tpcds_shape_sf100_p0/shape/query48.out |  38 ++--
 .../nereids_tpcds_shape_sf100_p0/shape/query50.out |  30 +--
 .../nereids_tpcds_shape_sf100_p0/shape/query59.out |  47 ++--
 .../nereids_tpcds_shape_sf100_p0/shape/query61.out |  36 +--
 .../nereids_tpcds_shape_sf100_p0/shape/query64.out | 133 +++++------
 .../nereids_tpcds_shape_sf100_p0/shape/query85.out |   8 +-
 .../shape/query13.groovy                           | 104 ++++-----
 .../shape/query16.groovy                           |  62 +++---
 .../shape/query17.groovy                           |  90 ++++----
 .../shape/query25.groovy                           |  96 ++++----
 .../shape/query28.groovy                           | 106 ++++-----
 .../shape/query29.groovy                           |  94 ++++----
 .../shape/query39.groovy                           |  56 ++---
 .../shape/query48.groovy                           | 134 +++++------
 .../shape/query50.groovy                           | 118 +++++-----
 .../shape/query59.groovy                           |  88 ++++----
 .../shape/query61.groovy                           |  88 ++++----
 .../shape/query64.groovy                           | 244 ++++++++++-----------
 .../shape/query85.groovy                           | 168 +++++++-------
 .../shape/query88.groovy                           | 188 ++++++++--------
 .../shape/query9.groovy                            | 102 ++++-----
 28 files changed, 1118 insertions(+), 1131 deletions(-)

diff --git 
a/fe/fe-core/src/main/java/org/apache/doris/statistics/ColumnStatistic.java 
b/fe/fe-core/src/main/java/org/apache/doris/statistics/ColumnStatistic.java
index d791ee1e0d..e60d7d8697 100644
--- a/fe/fe-core/src/main/java/org/apache/doris/statistics/ColumnStatistic.java
+++ b/fe/fe-core/src/main/java/org/apache/doris/statistics/ColumnStatistic.java
@@ -167,9 +167,6 @@ public class ColumnStatistic {
             double count = 
Double.parseDouble(resultRow.getColumnValueWithDefault("count", "0"));
             columnStatisticBuilder.setCount(count);
             double ndv = 
Double.parseDouble(resultRow.getColumnValueWithDefault("ndv", "0"));
-            if (0.99 * count < ndv && ndv < 1.01 * count) {
-                ndv = count;
-            }
             columnStatisticBuilder.setNdv(ndv);
             String nullCount = 
resultRow.getColumnValueWithDefault("null_count", "0");
             columnStatisticBuilder.setNumNulls(Double.parseDouble(nullCount));
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query16.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query16.out
index 550b3e1360..1d8f699cb2 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query16.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query16.out
@@ -4,8 +4,8 @@ PhysicalTopN
 --PhysicalTopN
 ----PhysicalProject
 ------hashAgg[GLOBAL]
---------hashAgg[LOCAL]
-----------PhysicalDistribute
+--------PhysicalDistribute
+----------hashAgg[LOCAL]
 ------------PhysicalProject
 --------------hashJoin[INNER_JOIN](cs1.cs_call_center_sk = 
call_center.cc_call_center_sk)
 ----------------PhysicalProject
@@ -15,7 +15,7 @@ PhysicalTopN
 ------------------PhysicalProject
 --------------------hashJoin[INNER_JOIN](cs1.cs_ship_date_sk = 
date_dim.d_date_sk)
 ----------------------PhysicalProject
-------------------------filter((cast(d_date as DATETIMEV2(0)) <= 
cast(days_add(cast('2002-4-01' as DATE), INTERVAL 60 DAY) as 
DATETIMEV2(0)))(date_dim.d_date >= 2002-04-01))
+------------------------filter((cast(d_date as DATETIMEV2(0)) <= 
cast(days_add(cast('2002-4-01' as DATEV2), INTERVAL 60 DAY) as 
DATETIMEV2(0)))(date_dim.d_date >= 2002-04-01))
 --------------------------PhysicalOlapScan[date_dim]
 ----------------------PhysicalDistribute
 ------------------------PhysicalProject
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query17.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query17.out
index 7a6ac4e437..3ea6acc6ee 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query17.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query17.out
@@ -8,40 +8,41 @@ PhysicalTopN
 ----------PhysicalDistribute
 ------------hashAgg[LOCAL]
 --------------PhysicalProject
-----------------hashJoin[INNER_JOIN](store.s_store_sk = 
store_sales.ss_store_sk)
+----------------hashJoin[INNER_JOIN](catalog_sales.cs_sold_date_sk = 
d3.d_date_sk)
 ------------------PhysicalProject
---------------------PhysicalOlapScan[store]
-------------------PhysicalDistribute
---------------------hashJoin[INNER_JOIN](item.i_item_sk = 
store_sales.ss_item_sk)
+--------------------hashJoin[INNER_JOIN](store_returns.sr_item_sk = 
catalog_sales.cs_item_sk)(store_returns.sr_customer_sk = 
catalog_sales.cs_bill_customer_sk)
 ----------------------PhysicalProject
-------------------------PhysicalOlapScan[item]
+------------------------PhysicalOlapScan[catalog_sales]
 ----------------------PhysicalDistribute
-------------------------PhysicalProject
---------------------------hashJoin[INNER_JOIN](catalog_sales.cs_sold_date_sk = 
d3.d_date_sk)
-----------------------------PhysicalProject
-------------------------------filter(d_quarter_name IN ('2001Q1', '2001Q2', 
'2001Q3'))
---------------------------------PhysicalOlapScan[date_dim]
-----------------------------PhysicalDistribute
-------------------------------PhysicalProject
---------------------------------hashJoin[INNER_JOIN](store_returns.sr_item_sk 
= catalog_sales.cs_item_sk)(store_returns.sr_customer_sk = 
catalog_sales.cs_bill_customer_sk)
-----------------------------------PhysicalProject
-------------------------------------PhysicalOlapScan[catalog_sales]
-----------------------------------PhysicalDistribute
+------------------------hashJoin[INNER_JOIN](store.s_store_sk = 
store_sales.ss_store_sk)
+--------------------------PhysicalProject
+----------------------------hashJoin[INNER_JOIN](item.i_item_sk = 
store_sales.ss_item_sk)
+------------------------------PhysicalDistribute
+--------------------------------PhysicalProject
+----------------------------------hashJoin[INNER_JOIN](store_returns.sr_returned_date_sk
 = d2.d_date_sk)
 ------------------------------------PhysicalProject
---------------------------------------hashJoin[INNER_JOIN](store_returns.sr_returned_date_sk
 = d2.d_date_sk)
+--------------------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk
 = store_returns.sr_item_sk)(store_sales.ss_ticket_number = 
store_returns.sr_ticket_number)(store_sales.ss_customer_sk = 
store_returns.sr_customer_sk)
 ----------------------------------------PhysicalProject
-------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk
 = store_returns.sr_item_sk)(store_sales.ss_ticket_number = 
store_returns.sr_ticket_number)(store_sales.ss_customer_sk = 
store_returns.sr_customer_sk)
---------------------------------------------PhysicalProject
-----------------------------------------------PhysicalOlapScan[store_returns]
---------------------------------------------hashJoin[INNER_JOIN](d1.d_date_sk 
= store_sales.ss_sold_date_sk)
-----------------------------------------------PhysicalProject
-------------------------------------------------PhysicalOlapScan[store_sales]
-----------------------------------------------PhysicalDistribute
-------------------------------------------------PhysicalProject
---------------------------------------------------filter((cast(d_quarter_name 
as VARCHAR(*)) = '2001Q1'))
-----------------------------------------------------PhysicalOlapScan[date_dim]
-----------------------------------------PhysicalDistribute
+------------------------------------------PhysicalOlapScan[store_returns]
+----------------------------------------hashJoin[INNER_JOIN](d1.d_date_sk = 
store_sales.ss_sold_date_sk)
 ------------------------------------------PhysicalProject
---------------------------------------------filter(d_quarter_name IN 
('2001Q1', '2001Q2', '2001Q3'))
-----------------------------------------------PhysicalOlapScan[date_dim]
+--------------------------------------------PhysicalOlapScan[store_sales]
+------------------------------------------PhysicalDistribute
+--------------------------------------------PhysicalProject
+----------------------------------------------filter((cast(d_quarter_name as 
VARCHAR(*)) = '2001Q1'))
+------------------------------------------------PhysicalOlapScan[date_dim]
+------------------------------------PhysicalDistribute
+--------------------------------------PhysicalProject
+----------------------------------------filter(d_quarter_name IN ('2001Q1', 
'2001Q2', '2001Q3'))
+------------------------------------------PhysicalOlapScan[date_dim]
+------------------------------PhysicalDistribute
+--------------------------------PhysicalProject
+----------------------------------PhysicalOlapScan[item]
+--------------------------PhysicalDistribute
+----------------------------PhysicalProject
+------------------------------PhysicalOlapScan[store]
+------------------PhysicalDistribute
+--------------------PhysicalProject
+----------------------filter(d_quarter_name IN ('2001Q1', '2001Q2', '2001Q3'))
+------------------------PhysicalOlapScan[date_dim]
 
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query25.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query25.out
index 83877b5550..52b9f72ff1 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query25.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query25.out
@@ -7,40 +7,41 @@ PhysicalTopN
 --------PhysicalDistribute
 ----------hashAgg[LOCAL]
 ------------PhysicalProject
---------------hashJoin[INNER_JOIN](store.s_store_sk = store_sales.ss_store_sk)
+--------------hashJoin[INNER_JOIN](catalog_sales.cs_sold_date_sk = 
d3.d_date_sk)
 ----------------PhysicalProject
-------------------PhysicalOlapScan[store]
-----------------PhysicalDistribute
-------------------hashJoin[INNER_JOIN](item.i_item_sk = store_sales.ss_item_sk)
+------------------hashJoin[INNER_JOIN](store_returns.sr_item_sk = 
catalog_sales.cs_item_sk)(store_returns.sr_customer_sk = 
catalog_sales.cs_bill_customer_sk)
 --------------------PhysicalProject
-----------------------PhysicalOlapScan[item]
+----------------------PhysicalOlapScan[catalog_sales]
 --------------------PhysicalDistribute
-----------------------PhysicalProject
-------------------------hashJoin[INNER_JOIN](catalog_sales.cs_sold_date_sk = 
d3.d_date_sk)
---------------------------PhysicalProject
-----------------------------filter((d3.d_year = 2000)(d3.d_moy <= 10)(d3.d_moy 
>= 4))
-------------------------------PhysicalOlapScan[date_dim]
---------------------------PhysicalDistribute
-----------------------------PhysicalProject
-------------------------------hashJoin[INNER_JOIN](store_returns.sr_item_sk = 
catalog_sales.cs_item_sk)(store_returns.sr_customer_sk = 
catalog_sales.cs_bill_customer_sk)
---------------------------------PhysicalProject
-----------------------------------PhysicalOlapScan[catalog_sales]
---------------------------------PhysicalDistribute
+----------------------hashJoin[INNER_JOIN](store.s_store_sk = 
store_sales.ss_store_sk)
+------------------------PhysicalProject
+--------------------------hashJoin[INNER_JOIN](item.i_item_sk = 
store_sales.ss_item_sk)
+----------------------------PhysicalDistribute
+------------------------------PhysicalProject
+--------------------------------hashJoin[INNER_JOIN](store_returns.sr_returned_date_sk
 = d2.d_date_sk)
 ----------------------------------PhysicalProject
-------------------------------------hashJoin[INNER_JOIN](store_returns.sr_returned_date_sk
 = d2.d_date_sk)
---------------------------------------PhysicalDistribute
-----------------------------------------PhysicalProject
-------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk
 = store_returns.sr_item_sk)(store_sales.ss_ticket_number = 
store_returns.sr_ticket_number)(store_sales.ss_customer_sk = 
store_returns.sr_customer_sk)
---------------------------------------------PhysicalProject
-----------------------------------------------PhysicalOlapScan[store_returns]
---------------------------------------------hashJoin[INNER_JOIN](d1.d_date_sk 
= store_sales.ss_sold_date_sk)
-----------------------------------------------PhysicalProject
-------------------------------------------------PhysicalOlapScan[store_sales]
-----------------------------------------------PhysicalDistribute
-------------------------------------------------PhysicalProject
---------------------------------------------------filter((d1.d_year = 
2000)(d1.d_moy = 4))
-----------------------------------------------------PhysicalOlapScan[date_dim]
+------------------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk
 = store_returns.sr_item_sk)(store_sales.ss_ticket_number = 
store_returns.sr_ticket_number)(store_sales.ss_customer_sk = 
store_returns.sr_customer_sk)
 --------------------------------------PhysicalProject
-----------------------------------------filter((d2.d_moy <= 10)(d2.d_moy >= 
4)(d2.d_year = 2000))
-------------------------------------------PhysicalOlapScan[date_dim]
+----------------------------------------PhysicalOlapScan[store_returns]
+--------------------------------------hashJoin[INNER_JOIN](d1.d_date_sk = 
store_sales.ss_sold_date_sk)
+----------------------------------------PhysicalProject
+------------------------------------------PhysicalOlapScan[store_sales]
+----------------------------------------PhysicalDistribute
+------------------------------------------PhysicalProject
+--------------------------------------------filter((d1.d_year = 2000)(d1.d_moy 
= 4))
+----------------------------------------------PhysicalOlapScan[date_dim]
+----------------------------------PhysicalDistribute
+------------------------------------PhysicalProject
+--------------------------------------filter((d2.d_moy <= 10)(d2.d_moy >= 
4)(d2.d_year = 2000))
+----------------------------------------PhysicalOlapScan[date_dim]
+----------------------------PhysicalDistribute
+------------------------------PhysicalProject
+--------------------------------PhysicalOlapScan[item]
+------------------------PhysicalDistribute
+--------------------------PhysicalProject
+----------------------------PhysicalOlapScan[store]
+----------------PhysicalDistribute
+------------------PhysicalProject
+--------------------filter((d3.d_year = 2000)(d3.d_moy <= 10)(d3.d_moy >= 4))
+----------------------PhysicalOlapScan[date_dim]
 
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query28.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query28.out
index 7a07c8ac87..ed3a0e5d8e 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query28.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query28.out
@@ -18,73 +18,55 @@ PhysicalLimit
 ------------------------------NestedLoopJoin[CROSS_JOIN]
 --------------------------------PhysicalLimit
 ----------------------------------PhysicalLimit
-------------------------------------hashAgg[DISTINCT_GLOBAL]
+------------------------------------hashAgg[GLOBAL]
 --------------------------------------PhysicalDistribute
-----------------------------------------hashAgg[DISTINCT_LOCAL]
-------------------------------------------hashAgg[GLOBAL]
---------------------------------------------PhysicalDistribute
-----------------------------------------------hashAgg[LOCAL]
-------------------------------------------------PhysicalProject
---------------------------------------------------filter((store_sales.ss_quantity
 <= 5)((((store_sales.ss_list_price >= 131.00) AND (store_sales.ss_list_price 
<= 141.00)) OR ((store_sales.ss_coupon_amt >= 16798.00) AND 
(store_sales.ss_coupon_amt <= 17798.00))) OR ((store_sales.ss_wholesale_cost >= 
25.00) AND (store_sales.ss_wholesale_cost <= 45.00)))(store_sales.ss_quantity 
>= 0))
-----------------------------------------------------PhysicalOlapScan[store_sales]
+----------------------------------------hashAgg[LOCAL]
+------------------------------------------PhysicalProject
+--------------------------------------------filter((store_sales.ss_quantity <= 
5)((((store_sales.ss_list_price >= 131.00) AND (store_sales.ss_list_price <= 
141.00)) OR ((store_sales.ss_coupon_amt >= 16798.00) AND 
(store_sales.ss_coupon_amt <= 17798.00))) OR ((store_sales.ss_wholesale_cost >= 
25.00) AND (store_sales.ss_wholesale_cost <= 45.00)))(store_sales.ss_quantity 
>= 0))
+----------------------------------------------PhysicalOlapScan[store_sales]
 --------------------------------PhysicalDistribute
 ----------------------------------PhysicalLimit
 ------------------------------------PhysicalLimit
---------------------------------------hashAgg[DISTINCT_GLOBAL]
-----------------------------------------PhysicalDistribute
-------------------------------------------hashAgg[DISTINCT_LOCAL]
---------------------------------------------hashAgg[GLOBAL]
-----------------------------------------------PhysicalDistribute
-------------------------------------------------hashAgg[LOCAL]
---------------------------------------------------PhysicalProject
-----------------------------------------------------filter((store_sales.ss_quantity
 <= 10)((((store_sales.ss_list_price >= 145.00) AND (store_sales.ss_list_price 
<= 155.00)) OR ((store_sales.ss_coupon_amt >= 14792.00) AND 
(store_sales.ss_coupon_amt <= 15792.00))) OR ((store_sales.ss_wholesale_cost >= 
46.00) AND (store_sales.ss_wholesale_cost <= 66.00)))(store_sales.ss_quantity 
>= 6))
-------------------------------------------------------PhysicalOlapScan[store_sales]
---------------------------PhysicalDistribute
-----------------------------PhysicalLimit
-------------------------------PhysicalLimit
---------------------------------hashAgg[DISTINCT_GLOBAL]
-----------------------------------PhysicalDistribute
-------------------------------------hashAgg[DISTINCT_LOCAL]
 --------------------------------------hashAgg[GLOBAL]
 ----------------------------------------PhysicalDistribute
 ------------------------------------------hashAgg[LOCAL]
 --------------------------------------------PhysicalProject
-----------------------------------------------filter(((((store_sales.ss_list_price
 >= 1.5E+2) AND (store_sales.ss_list_price <= 1.6E+2)) OR 
((store_sales.ss_coupon_amt >= 6.6E+3) AND (store_sales.ss_coupon_amt <= 
7.6E+3))) OR ((store_sales.ss_wholesale_cost >= 9.00) AND 
(store_sales.ss_wholesale_cost <= 29.00)))(store_sales.ss_quantity >= 
11)(store_sales.ss_quantity <= 15))
+----------------------------------------------filter((store_sales.ss_quantity 
<= 10)((((store_sales.ss_list_price >= 145.00) AND (store_sales.ss_list_price 
<= 155.00)) OR ((store_sales.ss_coupon_amt >= 14792.00) AND 
(store_sales.ss_coupon_amt <= 15792.00))) OR ((store_sales.ss_wholesale_cost >= 
46.00) AND (store_sales.ss_wholesale_cost <= 66.00)))(store_sales.ss_quantity 
>= 6))
 ------------------------------------------------PhysicalOlapScan[store_sales]
---------------------PhysicalDistribute
-----------------------PhysicalLimit
-------------------------PhysicalLimit
---------------------------hashAgg[DISTINCT_GLOBAL]
-----------------------------PhysicalDistribute
-------------------------------hashAgg[DISTINCT_LOCAL]
+--------------------------PhysicalDistribute
+----------------------------PhysicalLimit
+------------------------------PhysicalLimit
 --------------------------------hashAgg[GLOBAL]
 ----------------------------------PhysicalDistribute
 ------------------------------------hashAgg[LOCAL]
 --------------------------------------PhysicalProject
-----------------------------------------filter((store_sales.ss_quantity <= 
20)((((store_sales.ss_list_price >= 91.00) AND (store_sales.ss_list_price <= 
101.00)) OR ((store_sales.ss_coupon_amt >= 13493.00) AND 
(store_sales.ss_coupon_amt <= 14493.00))) OR ((store_sales.ss_wholesale_cost >= 
36.00) AND (store_sales.ss_wholesale_cost <= 56.00)))(store_sales.ss_quantity 
>= 16))
+----------------------------------------filter(((((store_sales.ss_list_price 
>= 1.5E+2) AND (store_sales.ss_list_price <= 1.6E+2)) OR 
((store_sales.ss_coupon_amt >= 6.6E+3) AND (store_sales.ss_coupon_amt <= 
7.6E+3))) OR ((store_sales.ss_wholesale_cost >= 9.00) AND 
(store_sales.ss_wholesale_cost <= 29.00)))(store_sales.ss_quantity >= 
11)(store_sales.ss_quantity <= 15))
 ------------------------------------------PhysicalOlapScan[store_sales]
---------------PhysicalDistribute
-----------------PhysicalLimit
-------------------PhysicalLimit
---------------------hashAgg[DISTINCT_GLOBAL]
-----------------------PhysicalDistribute
-------------------------hashAgg[DISTINCT_LOCAL]
+--------------------PhysicalDistribute
+----------------------PhysicalLimit
+------------------------PhysicalLimit
 --------------------------hashAgg[GLOBAL]
 ----------------------------PhysicalDistribute
 ------------------------------hashAgg[LOCAL]
 --------------------------------PhysicalProject
-----------------------------------filter(((((store_sales.ss_list_price >= 
0.00) AND (store_sales.ss_list_price <= 10.00)) OR ((store_sales.ss_coupon_amt 
>= 7629.00) AND (store_sales.ss_coupon_amt <= 8629.00))) OR 
((store_sales.ss_wholesale_cost >= 6.00) AND (store_sales.ss_wholesale_cost <= 
26.00)))(store_sales.ss_quantity <= 25)(store_sales.ss_quantity >= 21))
+----------------------------------filter((store_sales.ss_quantity <= 
20)((((store_sales.ss_list_price >= 91.00) AND (store_sales.ss_list_price <= 
101.00)) OR ((store_sales.ss_coupon_amt >= 13493.00) AND 
(store_sales.ss_coupon_amt <= 14493.00))) OR ((store_sales.ss_wholesale_cost >= 
36.00) AND (store_sales.ss_wholesale_cost <= 56.00)))(store_sales.ss_quantity 
>= 16))
 ------------------------------------PhysicalOlapScan[store_sales]
---------PhysicalDistribute
-----------PhysicalLimit
-------------PhysicalLimit
---------------hashAgg[DISTINCT_GLOBAL]
-----------------PhysicalDistribute
-------------------hashAgg[DISTINCT_LOCAL]
+--------------PhysicalDistribute
+----------------PhysicalLimit
+------------------PhysicalLimit
 --------------------hashAgg[GLOBAL]
 ----------------------PhysicalDistribute
 ------------------------hashAgg[LOCAL]
 --------------------------PhysicalProject
-----------------------------filter((store_sales.ss_quantity >= 
26)((((store_sales.ss_list_price >= 89.00) AND (store_sales.ss_list_price <= 
99.00)) OR ((store_sales.ss_coupon_amt >= 15257.00) AND 
(store_sales.ss_coupon_amt <= 16257.00))) OR ((store_sales.ss_wholesale_cost >= 
31.00) AND (store_sales.ss_wholesale_cost <= 51.00)))(store_sales.ss_quantity 
<= 30))
+----------------------------filter(((((store_sales.ss_list_price >= 0.00) AND 
(store_sales.ss_list_price <= 10.00)) OR ((store_sales.ss_coupon_amt >= 
7629.00) AND (store_sales.ss_coupon_amt <= 8629.00))) OR 
((store_sales.ss_wholesale_cost >= 6.00) AND (store_sales.ss_wholesale_cost <= 
26.00)))(store_sales.ss_quantity <= 25)(store_sales.ss_quantity >= 21))
 ------------------------------PhysicalOlapScan[store_sales]
+--------PhysicalDistribute
+----------PhysicalLimit
+------------PhysicalLimit
+--------------hashAgg[GLOBAL]
+----------------PhysicalDistribute
+------------------hashAgg[LOCAL]
+--------------------PhysicalProject
+----------------------filter((store_sales.ss_quantity >= 
26)((((store_sales.ss_list_price >= 89.00) AND (store_sales.ss_list_price <= 
99.00)) OR ((store_sales.ss_coupon_amt >= 15257.00) AND 
(store_sales.ss_coupon_amt <= 16257.00))) OR ((store_sales.ss_wholesale_cost >= 
31.00) AND (store_sales.ss_wholesale_cost <= 51.00)))(store_sales.ss_quantity 
<= 30))
+------------------------PhysicalOlapScan[store_sales]
 
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query29.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query29.out
index 95be784e2a..b23eeda8fa 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query29.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query29.out
@@ -27,20 +27,20 @@ PhysicalTopN
 ----------------------------------PhysicalOlapScan[catalog_sales]
 --------------------------------PhysicalDistribute
 ----------------------------------PhysicalProject
-------------------------------------hashJoin[INNER_JOIN](store_returns.sr_returned_date_sk
 = d2.d_date_sk)
+------------------------------------hashJoin[INNER_JOIN](d1.d_date_sk = 
store_sales.ss_sold_date_sk)
 --------------------------------------PhysicalProject
 
----------------------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk
 = store_returns.sr_item_sk)(store_sales.ss_ticket_number = 
store_returns.sr_ticket_number)(store_sales.ss_customer_sk = 
store_returns.sr_customer_sk)
 ------------------------------------------PhysicalProject
---------------------------------------------PhysicalOlapScan[store_returns]
-------------------------------------------hashJoin[INNER_JOIN](d1.d_date_sk = 
store_sales.ss_sold_date_sk)
+--------------------------------------------PhysicalOlapScan[store_sales]
+------------------------------------------hashJoin[INNER_JOIN](store_returns.sr_returned_date_sk
 = d2.d_date_sk)
 --------------------------------------------PhysicalProject
-----------------------------------------------PhysicalOlapScan[store_sales]
+----------------------------------------------PhysicalOlapScan[store_returns]
 --------------------------------------------PhysicalDistribute
 ----------------------------------------------PhysicalProject
-------------------------------------------------filter((d1.d_year = 
1999)(d1.d_moy = 4))
+------------------------------------------------filter((d2.d_moy <= 
7)(d2.d_moy >= 4)(d2.d_year = 1999))
 --------------------------------------------------PhysicalOlapScan[date_dim]
 --------------------------------------PhysicalDistribute
 ----------------------------------------PhysicalProject
-------------------------------------------filter((d2.d_moy <= 7)(d2.d_moy >= 
4)(d2.d_year = 1999))
+------------------------------------------filter((d1.d_year = 1999)(d1.d_moy = 
4))
 --------------------------------------------PhysicalOlapScan[date_dim]
 
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query39.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query39.out
index 7465afe902..48d9738a11 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query39.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query39.out
@@ -14,7 +14,7 @@ CteAnchor[cteId= ( CTEId#3=] )
 ----------------------PhysicalOlapScan[inventory]
 ----------------------PhysicalDistribute
 ------------------------PhysicalProject
---------------------------filter(((inv.d_moy = 1) OR (inv.d_moy = 
2))(date_dim.d_year = 1998))
+--------------------------filter(d_moy IN (1, 2)(date_dim.d_year = 1998))
 ----------------------------PhysicalOlapScan[date_dim]
 --------------------PhysicalDistribute
 ----------------------PhysicalProject
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query48.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query48.out
index 304b8fbcf0..20b2439b02 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query48.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query48.out
@@ -6,26 +6,26 @@ hashAgg[GLOBAL]
 ------PhysicalProject
 --------hashJoin[INNER_JOIN](store.s_store_sk = store_sales.ss_store_sk)
 ----------PhysicalProject
-------------PhysicalOlapScan[store]
-----------PhysicalDistribute
-------------PhysicalProject
+------------hashJoin[INNER_JOIN](store_sales.ss_sold_date_sk = 
date_dim.d_date_sk)
 --------------hashJoin[INNER_JOIN](store_sales.ss_addr_sk = 
customer_address.ca_address_sk)(((ca_state IN ('MD', 'MN', 'IA') AND 
((store_sales.ss_net_profit >= 0.00) AND (store_sales.ss_net_profit <= 
2000.00))) OR (ca_state IN ('VA', 'IL', 'TX') AND ((store_sales.ss_net_profit 
>= 150.00) AND (store_sales.ss_net_profit <= 3000.00)))) OR (ca_state IN ('MI', 
'WI', 'IN') AND ((store_sales.ss_net_profit >= 50.00) AND 
(store_sales.ss_net_profit <= 25000.00))))
-----------------PhysicalProject
-------------------filter(((ca_state IN ('MD', 'MN', 'IA') OR ca_state IN 
('VA', 'IL', 'TX')) OR ca_state IN ('MI', 'WI', 
'IN'))(customer_address.ca_country = 'United States'))
---------------------PhysicalOlapScan[customer_address]
+----------------PhysicalDistribute
+------------------hashJoin[INNER_JOIN](customer_demographics.cd_demo_sk = 
store_sales.ss_cdemo_sk)(((((cast(cd_marital_status as VARCHAR(*)) = 'U') AND 
(cast(cd_education_status as VARCHAR(*)) = 'Primary')) AND 
((store_sales.ss_sales_price >= 100.00) AND (store_sales.ss_sales_price <= 
150.00))) OR (((cast(cd_marital_status as VARCHAR(*)) = 'W') AND 
(cast(cd_education_status as VARCHAR(*)) = 'College')) AND 
((store_sales.ss_sales_price >= 50.00) AND (store_sales.ss_sales_price <= 
100.00)) [...]
+--------------------PhysicalProject
+----------------------filter(((((store_sales.ss_net_profit >= 0.00) AND 
(store_sales.ss_net_profit <= 2000.00)) OR ((store_sales.ss_net_profit >= 
150.00) AND (store_sales.ss_net_profit <= 3000.00))) OR 
((store_sales.ss_net_profit >= 50.00) AND (store_sales.ss_net_profit <= 
25000.00)))((((store_sales.ss_sales_price >= 100.00) AND 
(store_sales.ss_sales_price <= 150.00)) OR ((store_sales.ss_sales_price >= 
50.00) AND (store_sales.ss_sales_price <= 100.00))) OR 
((store_sales.ss_sales_price >= [...]
+------------------------PhysicalOlapScan[store_sales]
+--------------------PhysicalDistribute
+----------------------PhysicalProject
+------------------------filter(((((cast(cd_marital_status as VARCHAR(*)) = 
'U') AND (cast(cd_education_status as VARCHAR(*)) = 'Primary')) OR 
((cast(cd_marital_status as VARCHAR(*)) = 'W') AND (cast(cd_education_status as 
VARCHAR(*)) = 'College'))) OR ((cast(cd_marital_status as VARCHAR(*)) = 'D') 
AND (cast(cd_education_status as VARCHAR(*)) = '2 yr Degree'))))
+--------------------------PhysicalOlapScan[customer_demographics]
 ----------------PhysicalDistribute
 ------------------PhysicalProject
---------------------hashJoin[INNER_JOIN](store_sales.ss_sold_date_sk = 
date_dim.d_date_sk)
-----------------------hashJoin[INNER_JOIN](customer_demographics.cd_demo_sk = 
store_sales.ss_cdemo_sk)(((((cast(cd_marital_status as VARCHAR(*)) = 'U') AND 
(cast(cd_education_status as VARCHAR(*)) = 'Primary')) AND 
((store_sales.ss_sales_price >= 100.00) AND (store_sales.ss_sales_price <= 
150.00))) OR (((cast(cd_marital_status as VARCHAR(*)) = 'W') AND 
(cast(cd_education_status as VARCHAR(*)) = 'College')) AND 
((store_sales.ss_sales_price >= 50.00) AND (store_sales.ss_sales_price <= 100. 
[...]
-------------------------PhysicalProject
---------------------------filter(((((store_sales.ss_net_profit >= 0.00) AND 
(store_sales.ss_net_profit <= 2000.00)) OR ((store_sales.ss_net_profit >= 
150.00) AND (store_sales.ss_net_profit <= 3000.00))) OR 
((store_sales.ss_net_profit >= 50.00) AND (store_sales.ss_net_profit <= 
25000.00)))((((store_sales.ss_sales_price >= 100.00) AND 
(store_sales.ss_sales_price <= 150.00)) OR ((store_sales.ss_sales_price >= 
50.00) AND (store_sales.ss_sales_price <= 100.00))) OR 
((store_sales.ss_sales_pric [...]
-----------------------------PhysicalOlapScan[store_sales]
-------------------------PhysicalDistribute
---------------------------PhysicalProject
-----------------------------filter(((((cast(cd_marital_status as VARCHAR(*)) = 
'U') AND (cast(cd_education_status as VARCHAR(*)) = 'Primary')) OR 
((cast(cd_marital_status as VARCHAR(*)) = 'W') AND (cast(cd_education_status as 
VARCHAR(*)) = 'College'))) OR ((cast(cd_marital_status as VARCHAR(*)) = 'D') 
AND (cast(cd_education_status as VARCHAR(*)) = '2 yr Degree'))))
-------------------------------PhysicalOlapScan[customer_demographics]
-----------------------PhysicalDistribute
-------------------------PhysicalProject
---------------------------filter((date_dim.d_year = 1999))
-----------------------------PhysicalOlapScan[date_dim]
+--------------------filter(((ca_state IN ('MD', 'MN', 'IA') OR ca_state IN 
('VA', 'IL', 'TX')) OR ca_state IN ('MI', 'WI', 
'IN'))(customer_address.ca_country = 'United States'))
+----------------------PhysicalOlapScan[customer_address]
+--------------PhysicalDistribute
+----------------PhysicalProject
+------------------filter((date_dim.d_year = 1999))
+--------------------PhysicalOlapScan[date_dim]
+----------PhysicalDistribute
+------------PhysicalProject
+--------------PhysicalOlapScan[store]
 
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query50.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query50.out
index f1338ac40a..921f84d72c 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query50.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query50.out
@@ -8,22 +8,24 @@ PhysicalTopN
 ----------hashAgg[LOCAL]
 ------------PhysicalProject
 --------------hashJoin[INNER_JOIN](store_sales.ss_store_sk = store.s_store_sk)
-----------------PhysicalProject
-------------------PhysicalOlapScan[store]
 ----------------PhysicalDistribute
-------------------hashJoin[INNER_JOIN](store_sales.ss_sold_date_sk = 
d1.d_date_sk)
---------------------PhysicalProject
-----------------------PhysicalOlapScan[date_dim]
---------------------PhysicalDistribute
+------------------PhysicalProject
+--------------------hashJoin[INNER_JOIN](store_sales.ss_sold_date_sk = 
d1.d_date_sk)
 ----------------------PhysicalProject
-------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk = 
store_returns.sr_item_sk)(store_sales.ss_ticket_number = 
store_returns.sr_ticket_number)(store_sales.ss_customer_sk = 
store_returns.sr_customer_sk)
---------------------------PhysicalProject
-----------------------------PhysicalOlapScan[store_sales]
---------------------------hashJoin[INNER_JOIN](store_returns.sr_returned_date_sk
 = d2.d_date_sk)
+------------------------PhysicalOlapScan[date_dim]
+----------------------PhysicalDistribute
+------------------------PhysicalProject
+--------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk = 
store_returns.sr_item_sk)(store_sales.ss_ticket_number = 
store_returns.sr_ticket_number)(store_sales.ss_customer_sk = 
store_returns.sr_customer_sk)
 ----------------------------PhysicalProject
-------------------------------PhysicalOlapScan[store_returns]
-----------------------------PhysicalDistribute
+------------------------------PhysicalOlapScan[store_sales]
+----------------------------hashJoin[INNER_JOIN](store_returns.sr_returned_date_sk
 = d2.d_date_sk)
 ------------------------------PhysicalProject
---------------------------------filter((d2.d_year = 2001)(d2.d_moy = 8))
-----------------------------------PhysicalOlapScan[date_dim]
+--------------------------------PhysicalOlapScan[store_returns]
+------------------------------PhysicalDistribute
+--------------------------------PhysicalProject
+----------------------------------filter((d2.d_year = 2001)(d2.d_moy = 8))
+------------------------------------PhysicalOlapScan[date_dim]
+----------------PhysicalDistribute
+------------------PhysicalProject
+--------------------PhysicalOlapScan[store]
 
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query59.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query59.out
index 9af8591c8f..58e7e2211c 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query59.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query59.out
@@ -17,32 +17,33 @@ CteAnchor[cteId= ( CTEId#4=] )
 ----PhysicalDistribute
 ------PhysicalTopN
 --------PhysicalProject
-----------hashJoin[INNER_JOIN](d.d_week_seq = d_week_seq2)
+----------hashJoin[INNER_JOIN](y.s_store_id1 = 
x.s_store_id2)(expr_cast(d_week_seq1 as BIGINT) = expr_(d_week_seq2 - 52))
 ------------PhysicalDistribute
 --------------PhysicalProject
-----------------filter((d.d_month_seq <= 1219)(d.d_month_seq >= 1208))
-------------------PhysicalOlapScan[date_dim]
-------------PhysicalDistribute
---------------hashJoin[INNER_JOIN](y.s_store_id1 = 
x.s_store_id2)(wss.ss_store_sk = store.s_store_sk)
-----------------PhysicalDistribute
-------------------PhysicalProject
---------------------PhysicalOlapScan[store]
-----------------PhysicalDistribute
-------------------hashJoin[INNER_JOIN](expr_cast(d_week_seq1 as BIGINT) = 
expr_(d_week_seq2 - 52))
+----------------hashJoin[INNER_JOIN](wss.ss_store_sk = store.s_store_sk)
+------------------hashJoin[INNER_JOIN](d.d_week_seq = d_week_seq2)
+--------------------PhysicalDistribute
+----------------------PhysicalProject
+------------------------CteConsumer[cteId= ( CTEId#4=] )
+--------------------PhysicalDistribute
+----------------------PhysicalProject
+------------------------filter((d.d_month_seq <= 1219)(d.d_month_seq >= 1208))
+--------------------------PhysicalOlapScan[date_dim]
+------------------PhysicalDistribute
 --------------------PhysicalProject
-----------------------CteConsumer[cteId= ( CTEId#4=] )
+----------------------PhysicalOlapScan[store]
+------------PhysicalDistribute
+--------------PhysicalProject
+----------------hashJoin[INNER_JOIN](wss.ss_store_sk = store.s_store_sk)
+------------------hashJoin[INNER_JOIN](d.d_week_seq = d_week_seq1)
 --------------------PhysicalDistribute
 ----------------------PhysicalProject
-------------------------hashJoin[INNER_JOIN](wss.ss_store_sk = 
store.s_store_sk)
---------------------------PhysicalDistribute
-----------------------------PhysicalProject
-------------------------------PhysicalOlapScan[store]
---------------------------PhysicalDistribute
-----------------------------hashJoin[INNER_JOIN](d.d_week_seq = d_week_seq1)
-------------------------------PhysicalProject
---------------------------------CteConsumer[cteId= ( CTEId#4=] )
-------------------------------PhysicalDistribute
---------------------------------PhysicalProject
-----------------------------------filter((d.d_month_seq <= 1207)(d.d_month_seq 
>= 1196))
-------------------------------------PhysicalOlapScan[date_dim]
+------------------------CteConsumer[cteId= ( CTEId#4=] )
+--------------------PhysicalDistribute
+----------------------PhysicalProject
+------------------------filter((d.d_month_seq <= 1207)(d.d_month_seq >= 1196))
+--------------------------PhysicalOlapScan[date_dim]
+------------------PhysicalDistribute
+--------------------PhysicalProject
+----------------------PhysicalOlapScan[store]
 
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query61.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query61.out
index 072c3b8f85..beaf2eb582 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query61.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query61.out
@@ -8,31 +8,31 @@ PhysicalTopN
 ----------PhysicalDistribute
 ------------hashAgg[LOCAL]
 --------------PhysicalProject
-----------------hashJoin[INNER_JOIN](store_sales.ss_item_sk = item.i_item_sk)
+----------------hashJoin[INNER_JOIN](customer_address.ca_address_sk = 
customer.c_current_addr_sk)
 ------------------PhysicalProject
---------------------filter((cast(i_category as VARCHAR(*)) = 'Jewelry'))
-----------------------PhysicalOlapScan[item]
+--------------------filter((customer_address.ca_gmt_offset = -7.00))
+----------------------PhysicalOlapScan[customer_address]
 ------------------PhysicalDistribute
---------------------PhysicalProject
-----------------------hashJoin[INNER_JOIN](store_sales.ss_promo_sk = 
promotion.p_promo_sk)
+--------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk = 
item.i_item_sk)
+----------------------PhysicalProject
+------------------------filter((cast(i_category as VARCHAR(*)) = 'Jewelry'))
+--------------------------PhysicalOlapScan[item]
+----------------------PhysicalDistribute
 ------------------------PhysicalProject
---------------------------filter((((cast(p_channel_dmail as VARCHAR(*)) = 'Y') 
OR (cast(p_channel_email as VARCHAR(*)) = 'Y')) OR (cast(p_channel_tv as 
VARCHAR(*)) = 'Y')))
-----------------------------PhysicalOlapScan[promotion]
-------------------------PhysicalDistribute
---------------------------PhysicalProject
-----------------------------hashJoin[INNER_JOIN](store_sales.ss_sold_date_sk = 
date_dim.d_date_sk)
+--------------------------hashJoin[INNER_JOIN](store_sales.ss_customer_sk = 
customer.c_customer_sk)
+----------------------------PhysicalProject
+------------------------------PhysicalOlapScan[customer]
+----------------------------PhysicalDistribute
 ------------------------------PhysicalProject
---------------------------------filter((date_dim.d_moy = 11)(date_dim.d_year = 
1999))
-----------------------------------PhysicalOlapScan[date_dim]
-------------------------------PhysicalDistribute
---------------------------------hashJoin[INNER_JOIN](customer_address.ca_address_sk
 = customer.c_current_addr_sk)
+--------------------------------hashJoin[INNER_JOIN](store_sales.ss_promo_sk = 
promotion.p_promo_sk)
 ----------------------------------PhysicalProject
-------------------------------------filter((customer_address.ca_gmt_offset = 
-7.00))
---------------------------------------PhysicalOlapScan[customer_address]
+------------------------------------filter((((cast(p_channel_dmail as 
VARCHAR(*)) = 'Y') OR (cast(p_channel_email as VARCHAR(*)) = 'Y')) OR 
(cast(p_channel_tv as VARCHAR(*)) = 'Y')))
+--------------------------------------PhysicalOlapScan[promotion]
 ----------------------------------PhysicalDistribute
-------------------------------------hashJoin[INNER_JOIN](store_sales.ss_customer_sk
 = customer.c_customer_sk)
+------------------------------------hashJoin[INNER_JOIN](store_sales.ss_sold_date_sk
 = date_dim.d_date_sk)
 --------------------------------------PhysicalProject
-----------------------------------------PhysicalOlapScan[customer]
+----------------------------------------filter((date_dim.d_moy = 
11)(date_dim.d_year = 1999))
+------------------------------------------PhysicalOlapScan[date_dim]
 --------------------------------------PhysicalDistribute
 ----------------------------------------PhysicalProject
 
------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_store_sk
 = store.s_store_sk)
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query64.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query64.out
index 0a8fe40145..bcef9770a8 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query64.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query64.out
@@ -7,112 +7,117 @@ CteAnchor[cteId= ( CTEId#14=] )
 --------PhysicalDistribute
 ----------hashAgg[LOCAL]
 ------------PhysicalProject
---------------hashJoin[INNER_JOIN](customer.c_current_addr_sk = 
ad2.ca_address_sk)
+--------------hashJoin[INNER_JOIN](customer.c_first_shipto_date_sk = 
d3.d_date_sk)
 ----------------PhysicalProject
-------------------PhysicalOlapScan[customer_address]
+------------------PhysicalOlapScan[date_dim]
 ----------------PhysicalDistribute
 ------------------PhysicalProject
---------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk = 
cs_ui.cs_item_sk)
+--------------------hashJoin[INNER_JOIN](customer.c_current_addr_sk = 
ad2.ca_address_sk)
 ----------------------PhysicalProject
-------------------------filter((sale > (2 * refund)))
---------------------------hashAgg[GLOBAL]
-----------------------------PhysicalDistribute
-------------------------------hashAgg[LOCAL]
---------------------------------PhysicalProject
-----------------------------------hashJoin[INNER_JOIN](catalog_sales.cs_item_sk
 = catalog_returns.cr_item_sk)(catalog_sales.cs_order_number = 
catalog_returns.cr_order_number)
-------------------------------------PhysicalProject
---------------------------------------PhysicalOlapScan[catalog_sales]
-------------------------------------PhysicalProject
---------------------------------------PhysicalOlapScan[catalog_returns]
+------------------------PhysicalOlapScan[customer_address]
 ----------------------PhysicalDistribute
 ------------------------PhysicalProject
---------------------------hashJoin[INNER_JOIN](store_sales.ss_sold_date_sk = 
d1.d_date_sk)
+--------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk = 
cs_ui.cs_item_sk)
 ----------------------------PhysicalProject
-------------------------------filter(((d1.d_year = 2001) OR (d1.d_year = 
2002)))
---------------------------------PhysicalOlapScan[date_dim]
+------------------------------filter((sale > (2 * refund)))
+--------------------------------hashAgg[GLOBAL]
+----------------------------------PhysicalDistribute
+------------------------------------hashAgg[LOCAL]
+--------------------------------------PhysicalProject
+----------------------------------------hashJoin[INNER_JOIN](catalog_sales.cs_item_sk
 = catalog_returns.cr_item_sk)(catalog_sales.cs_order_number = 
catalog_returns.cr_order_number)
+------------------------------------------PhysicalProject
+--------------------------------------------PhysicalOlapScan[catalog_sales]
+------------------------------------------PhysicalProject
+--------------------------------------------PhysicalOlapScan[catalog_returns]
 ----------------------------PhysicalDistribute
 ------------------------------PhysicalProject
---------------------------------hashJoin[INNER_JOIN](store_sales.ss_hdemo_sk = 
hd1.hd_demo_sk)
+--------------------------------hashJoin[INNER_JOIN](hd2.hd_income_band_sk = 
ib2.ib_income_band_sk)
 ----------------------------------PhysicalProject
-------------------------------------hashJoin[INNER_JOIN](hd1.hd_income_band_sk 
= ib1.ib_income_band_sk)
---------------------------------------PhysicalProject
-----------------------------------------PhysicalOlapScan[household_demographics]
---------------------------------------PhysicalDistribute
-----------------------------------------PhysicalProject
-------------------------------------------PhysicalOlapScan[income_band]
+------------------------------------PhysicalOlapScan[income_band]
 ----------------------------------PhysicalDistribute
 ------------------------------------PhysicalProject
---------------------------------------hashJoin[INNER_JOIN](store_sales.ss_promo_sk
 = promotion.p_promo_sk)
+--------------------------------------hashJoin[INNER_JOIN](customer.c_first_sales_date_sk
 = d2.d_date_sk)
 ----------------------------------------PhysicalProject
-------------------------------------------PhysicalOlapScan[promotion]
+------------------------------------------PhysicalOlapScan[date_dim]
 ----------------------------------------PhysicalDistribute
 ------------------------------------------PhysicalProject
---------------------------------------------hashJoin[INNER_JOIN](customer.c_first_shipto_date_sk
 = d3.d_date_sk)
+--------------------------------------------hashJoin[INNER_JOIN](customer.c_current_hdemo_sk
 = hd2.hd_demo_sk)
 ----------------------------------------------PhysicalProject
-------------------------------------------------PhysicalOlapScan[date_dim]
+------------------------------------------------PhysicalOlapScan[household_demographics]
 ----------------------------------------------PhysicalDistribute
 ------------------------------------------------PhysicalProject
---------------------------------------------------hashJoin[INNER_JOIN](hd2.hd_income_band_sk
 = ib2.ib_income_band_sk)
-----------------------------------------------------PhysicalDistribute
-------------------------------------------------------PhysicalProject
---------------------------------------------------------PhysicalOlapScan[income_band]
+--------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_promo_sk
 = promotion.p_promo_sk)
+----------------------------------------------------PhysicalProject
+------------------------------------------------------PhysicalOlapScan[promotion]
 ----------------------------------------------------PhysicalDistribute
 ------------------------------------------------------PhysicalProject
---------------------------------------------------------hashJoin[INNER_JOIN](customer.c_first_sales_date_sk
 = d2.d_date_sk)
+--------------------------------------------------------hashJoin[INNER_JOIN](hd1.hd_income_band_sk
 = ib1.ib_income_band_sk)
 ----------------------------------------------------------PhysicalProject
-------------------------------------------------------------PhysicalOlapScan[date_dim]
+------------------------------------------------------------PhysicalOlapScan[income_band]
 ----------------------------------------------------------PhysicalDistribute
 ------------------------------------------------------------PhysicalProject
---------------------------------------------------------------hashJoin[INNER_JOIN](customer.c_current_hdemo_sk
 = hd2.hd_demo_sk)
+--------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk
 = store_returns.sr_item_sk)(store_sales.ss_ticket_number = 
store_returns.sr_ticket_number)
 ----------------------------------------------------------------PhysicalProject
-------------------------------------------------------------------PhysicalOlapScan[household_demographics]
+------------------------------------------------------------------PhysicalOlapScan[store_returns]
 
----------------------------------------------------------------PhysicalDistribute
 
------------------------------------------------------------------PhysicalProject
 
--------------------------------------------------------------------hashJoin[INNER_JOIN](customer.c_current_cdemo_sk
 = cd2.cd_demo_sk)( not (cd_marital_status = cd_marital_status))
-----------------------------------------------------------------------PhysicalProject
-------------------------------------------------------------------------PhysicalOlapScan[customer_demographics]
 
----------------------------------------------------------------------PhysicalDistribute
 
------------------------------------------------------------------------PhysicalProject
---------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_customer_sk
 = customer.c_customer_sk)
-----------------------------------------------------------------------------PhysicalProject
-------------------------------------------------------------------------------PhysicalOlapScan[customer]
+--------------------------------------------------------------------------PhysicalOlapScan[customer_demographics]
+----------------------------------------------------------------------PhysicalDistribute
+------------------------------------------------------------------------PhysicalProject
+--------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_cdemo_sk
 = cd1.cd_demo_sk)
+----------------------------------------------------------------------------PhysicalDistribute
+------------------------------------------------------------------------------PhysicalProject
+--------------------------------------------------------------------------------PhysicalOlapScan[customer_demographics]
 
----------------------------------------------------------------------------PhysicalDistribute
 
------------------------------------------------------------------------------PhysicalProject
---------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_cdemo_sk
 = cd1.cd_demo_sk)
+--------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_sold_date_sk
 = d1.d_date_sk)
 
----------------------------------------------------------------------------------PhysicalProject
-------------------------------------------------------------------------------------PhysicalOlapScan[customer_demographics]
-----------------------------------------------------------------------------------PhysicalDistribute
-------------------------------------------------------------------------------------PhysicalProject
---------------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_store_sk
 = store.s_store_sk)
-----------------------------------------------------------------------------------------PhysicalProject
-------------------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_addr_sk
 = ad1.ca_address_sk)
+------------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_hdemo_sk
 = hd1.hd_demo_sk)
+--------------------------------------------------------------------------------------PhysicalProject
+----------------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_customer_sk
 = customer.c_customer_sk)
+------------------------------------------------------------------------------------------PhysicalDistribute
 
--------------------------------------------------------------------------------------------PhysicalProject
-----------------------------------------------------------------------------------------------PhysicalOlapScan[customer_address]
---------------------------------------------------------------------------------------------PhysicalDistribute
-----------------------------------------------------------------------------------------------PhysicalProject
-------------------------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk
 = store_returns.sr_item_sk)(store_sales.ss_ticket_number = 
store_returns.sr_ticket_number)
---------------------------------------------------------------------------------------------------PhysicalProject
-----------------------------------------------------------------------------------------------------PhysicalOlapScan[store_returns]
---------------------------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk
 = item_sk)
-----------------------------------------------------------------------------------------------------PhysicalProject
-------------------------------------------------------------------------------------------------------PhysicalOlapScan[store_sales]
+----------------------------------------------------------------------------------------------PhysicalOlapScan[customer]
+------------------------------------------------------------------------------------------PhysicalDistribute
+--------------------------------------------------------------------------------------------PhysicalProject
+----------------------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_store_sk
 = store.s_store_sk)
+------------------------------------------------------------------------------------------------PhysicalProject
+--------------------------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_addr_sk
 = ad1.ca_address_sk)
+----------------------------------------------------------------------------------------------------PhysicalDistribute
+------------------------------------------------------------------------------------------------------hashJoin[INNER_JOIN](store_sales.ss_item_sk
 = item_sk)
+--------------------------------------------------------------------------------------------------------PhysicalProject
+----------------------------------------------------------------------------------------------------------PhysicalOlapScan[store_sales]
+--------------------------------------------------------------------------------------------------------PhysicalDistribute
+----------------------------------------------------------------------------------------------------------PhysicalProject
+------------------------------------------------------------------------------------------------------------filter((item.i_current_price
 >= 24.00)(item.i_current_price <= 33.00)i_color IN ('blanched', 'medium', 
'brown', 'chocolate', 'burlywood', 'drab'))
+--------------------------------------------------------------------------------------------------------------PhysicalOlapScan[item]
 
----------------------------------------------------------------------------------------------------PhysicalDistribute
 
------------------------------------------------------------------------------------------------------PhysicalProject
---------------------------------------------------------------------------------------------------------filter((item.i_current_price
 >= 24.00)(item.i_current_price <= 33.00)i_color IN ('blanched', 'medium', 
'brown', 'chocolate', 'burlywood', 'drab'))
-----------------------------------------------------------------------------------------------------------PhysicalOlapScan[item]
-----------------------------------------------------------------------------------------PhysicalDistribute
-------------------------------------------------------------------------------------------PhysicalProject
---------------------------------------------------------------------------------------------PhysicalOlapScan[store]
+--------------------------------------------------------------------------------------------------------PhysicalOlapScan[customer_address]
+------------------------------------------------------------------------------------------------PhysicalDistribute
+--------------------------------------------------------------------------------------------------PhysicalProject
+----------------------------------------------------------------------------------------------------PhysicalOlapScan[store]
+--------------------------------------------------------------------------------------PhysicalDistribute
+----------------------------------------------------------------------------------------PhysicalProject
+------------------------------------------------------------------------------------------PhysicalOlapScan[household_demographics]
+----------------------------------------------------------------------------------PhysicalDistribute
+------------------------------------------------------------------------------------PhysicalProject
+--------------------------------------------------------------------------------------filter(((d1.d_year
 = 2001) OR (d1.d_year = 2002)))
+----------------------------------------------------------------------------------------PhysicalOlapScan[date_dim]
 --PhysicalQuickSort
 ----PhysicalDistribute
 ------PhysicalQuickSort
 --------PhysicalProject
 ----------hashJoin[INNER_JOIN](cs1.item_sk = cs2.item_sk)(cs1.store_name = 
cs2.store_name)(cs1.store_zip = cs2.store_zip)(cs2.cnt <= cs1.cnt)
-------------PhysicalProject
---------------filter((cs1.syear = 2001))
-----------------CteConsumer[cteId= ( CTEId#14=] )
 ------------PhysicalDistribute
 --------------PhysicalProject
 ----------------filter((cs2.syear = 2002))
 ------------------CteConsumer[cteId= ( CTEId#14=] )
+------------PhysicalDistribute
+--------------PhysicalProject
+----------------filter((cs1.syear = 2001))
+------------------CteConsumer[cteId= ( CTEId#14=] )
 
diff --git 
a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query85.out 
b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query85.out
index e430099ada..a078d9cfe1 100644
--- a/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query85.out
+++ b/regression-test/data/nereids_tpcds_shape_sf100_p0/shape/query85.out
@@ -8,14 +8,14 @@ PhysicalTopN
 ----------PhysicalDistribute
 ------------hashAgg[LOCAL]
 --------------PhysicalProject
-----------------hashJoin[INNER_JOIN](web_sales.ws_web_page_sk = 
web_page.wp_web_page_sk)
+----------------hashJoin[INNER_JOIN](cd2.cd_demo_sk = 
web_returns.wr_returning_cdemo_sk)(cd1.cd_marital_status = 
cd2.cd_marital_status)(cd1.cd_education_status = cd2.cd_education_status)
 ------------------PhysicalProject
---------------------PhysicalOlapScan[web_page]
+--------------------PhysicalOlapScan[customer_demographics]
 ------------------PhysicalDistribute
 --------------------PhysicalProject
-----------------------hashJoin[INNER_JOIN](cd2.cd_demo_sk = 
web_returns.wr_returning_cdemo_sk)(cd1.cd_marital_status = 
cd2.cd_marital_status)(cd1.cd_education_status = cd2.cd_education_status)
+----------------------hashJoin[INNER_JOIN](web_sales.ws_web_page_sk = 
web_page.wp_web_page_sk)
 ------------------------PhysicalProject
---------------------------PhysicalOlapScan[customer_demographics]
+--------------------------PhysicalOlapScan[web_page]
 ------------------------PhysicalDistribute
 --------------------------PhysicalProject
 ----------------------------hashJoin[INNER_JOIN](cd1.cd_demo_sk = 
web_returns.wr_refunded_cdemo_sk)(((((cast(cd_marital_status as VARCHAR(*)) = 
'M') AND (cast(cd_education_status as VARCHAR(*)) = '4 yr Degree')) AND 
((web_sales.ws_sales_price >= 100.00) AND (web_sales.ws_sales_price <= 
150.00))) OR (((cast(cd_marital_status as VARCHAR(*)) = 'S') AND 
(cast(cd_education_status as VARCHAR(*)) = 'Secondary')) AND 
((web_sales.ws_sales_price >= 50.00) AND (web_sales.ws_sales_price <= 100.00))) 
[...]
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query13.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query13.groovy
index 34f4dfc5bd..7f0877ffac 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query13.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query13.groovy
@@ -30,59 +30,59 @@ suite("query13") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_13 '''
-//     explain shape plan
+    qt_ds_shape_13 '''
+    explain shape plan
 
 
-// select avg(ss_quantity)
-//        ,avg(ss_ext_sales_price)
-//        ,avg(ss_ext_wholesale_cost)
-//        ,sum(ss_ext_wholesale_cost)
-//  from store_sales
-//      ,store
-//      ,customer_demographics
-//      ,household_demographics
-//      ,customer_address
-//      ,date_dim
-//  where s_store_sk = ss_store_sk
-//  and  ss_sold_date_sk = d_date_sk and d_year = 2001
-//  and((ss_hdemo_sk=hd_demo_sk
-//   and cd_demo_sk = ss_cdemo_sk
-//   and cd_marital_status = 'D'
-//   and cd_education_status = 'Unknown'
-//   and ss_sales_price between 100.00 and 150.00
-//   and hd_dep_count = 3   
-//      )or
-//      (ss_hdemo_sk=hd_demo_sk
-//   and cd_demo_sk = ss_cdemo_sk
-//   and cd_marital_status = 'S'
-//   and cd_education_status = 'College'
-//   and ss_sales_price between 50.00 and 100.00   
-//   and hd_dep_count = 1
-//      ) or 
-//      (ss_hdemo_sk=hd_demo_sk
-//   and cd_demo_sk = ss_cdemo_sk
-//   and cd_marital_status = 'M'
-//   and cd_education_status = '4 yr Degree'
-//   and ss_sales_price between 150.00 and 200.00 
-//   and hd_dep_count = 1  
-//      ))
-//  and((ss_addr_sk = ca_address_sk
-//   and ca_country = 'United States'
-//   and ca_state in ('SD', 'KS', 'MI')
-//   and ss_net_profit between 100 and 200  
-//      ) or
-//      (ss_addr_sk = ca_address_sk
-//   and ca_country = 'United States'
-//   and ca_state in ('MO', 'ND', 'CO')
-//   and ss_net_profit between 150 and 300  
-//      ) or
-//      (ss_addr_sk = ca_address_sk
-//   and ca_country = 'United States'
-//   and ca_state in ('NH', 'OH', 'TX')
-//   and ss_net_profit between 50 and 250  
-//      ))
-// ;
+select avg(ss_quantity)
+       ,avg(ss_ext_sales_price)
+       ,avg(ss_ext_wholesale_cost)
+       ,sum(ss_ext_wholesale_cost)
+ from store_sales
+     ,store
+     ,customer_demographics
+     ,household_demographics
+     ,customer_address
+     ,date_dim
+ where s_store_sk = ss_store_sk
+ and  ss_sold_date_sk = d_date_sk and d_year = 2001
+ and((ss_hdemo_sk=hd_demo_sk
+  and cd_demo_sk = ss_cdemo_sk
+  and cd_marital_status = 'D'
+  and cd_education_status = 'Unknown'
+  and ss_sales_price between 100.00 and 150.00
+  and hd_dep_count = 3   
+     )or
+     (ss_hdemo_sk=hd_demo_sk
+  and cd_demo_sk = ss_cdemo_sk
+  and cd_marital_status = 'S'
+  and cd_education_status = 'College'
+  and ss_sales_price between 50.00 and 100.00   
+  and hd_dep_count = 1
+     ) or 
+     (ss_hdemo_sk=hd_demo_sk
+  and cd_demo_sk = ss_cdemo_sk
+  and cd_marital_status = 'M'
+  and cd_education_status = '4 yr Degree'
+  and ss_sales_price between 150.00 and 200.00 
+  and hd_dep_count = 1  
+     ))
+ and((ss_addr_sk = ca_address_sk
+  and ca_country = 'United States'
+  and ca_state in ('SD', 'KS', 'MI')
+  and ss_net_profit between 100 and 200  
+     ) or
+     (ss_addr_sk = ca_address_sk
+  and ca_country = 'United States'
+  and ca_state in ('MO', 'ND', 'CO')
+  and ss_net_profit between 150 and 300  
+     ) or
+     (ss_addr_sk = ca_address_sk
+  and ca_country = 'United States'
+  and ca_state in ('NH', 'OH', 'TX')
+  and ss_net_profit between 50 and 250  
+     ))
+;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query16.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query16.groovy
index 54a1b91282..4526ca4b1b 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query16.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query16.groovy
@@ -30,40 +30,40 @@ suite("query16") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_16 '''
-//     explain shape plan
+    qt_ds_shape_16 '''
+    explain shape plan
 
 
 
 
-// select  
-//    count(distinct cs_order_number) as "order count"
-//   ,sum(cs_ext_ship_cost) as "total shipping cost"
-//   ,sum(cs_net_profit) as "total net profit"
-// from
-//    catalog_sales cs1
-//   ,date_dim
-//   ,customer_address
-//   ,call_center
-// where
-//     d_date between '2002-4-01' and 
-//            (cast('2002-4-01' as date) + interval 60 day)
-// and cs1.cs_ship_date_sk = d_date_sk
-// and cs1.cs_ship_addr_sk = ca_address_sk
-// and ca_state = 'WV'
-// and cs1.cs_call_center_sk = cc_call_center_sk
-// and cc_county in ('Ziebach County','Luce County','Richland County','Daviess 
County',
-//                   'Barrow County'
-// )
-// and exists (select *
-//             from catalog_sales cs2
-//             where cs1.cs_order_number = cs2.cs_order_number
-//               and cs1.cs_warehouse_sk <> cs2.cs_warehouse_sk)
-// and not exists(select *
-//                from catalog_returns cr1
-//                where cs1.cs_order_number = cr1.cr_order_number)
-// order by count(distinct cs_order_number)
-// limit 100;
+select  
+   count(distinct cs_order_number) as "order count"
+  ,sum(cs_ext_ship_cost) as "total shipping cost"
+  ,sum(cs_net_profit) as "total net profit"
+from
+   catalog_sales cs1
+  ,date_dim
+  ,customer_address
+  ,call_center
+where
+    d_date between '2002-4-01' and 
+           (cast('2002-4-01' as date) + interval 60 day)
+and cs1.cs_ship_date_sk = d_date_sk
+and cs1.cs_ship_addr_sk = ca_address_sk
+and ca_state = 'WV'
+and cs1.cs_call_center_sk = cc_call_center_sk
+and cc_county in ('Ziebach County','Luce County','Richland County','Daviess 
County',
+                  'Barrow County'
+)
+and exists (select *
+            from catalog_sales cs2
+            where cs1.cs_order_number = cs2.cs_order_number
+              and cs1.cs_warehouse_sk <> cs2.cs_warehouse_sk)
+and not exists(select *
+               from catalog_returns cr1
+               where cs1.cs_order_number = cr1.cr_order_number)
+order by count(distinct cs_order_number)
+limit 100;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query17.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query17.groovy
index ae4dd67d4f..5ab0135501 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query17.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query17.groovy
@@ -30,54 +30,54 @@ suite("query17") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_17 '''
-//     explain shape plan
+    qt_ds_shape_17 '''
+    explain shape plan
 
 
 
 
-// select  i_item_id
-//        ,i_item_desc
-//        ,s_state
-//        ,count(ss_quantity) as store_sales_quantitycount
-//        ,avg(ss_quantity) as store_sales_quantityave
-//        ,stddev_samp(ss_quantity) as store_sales_quantitystdev
-//        ,stddev_samp(ss_quantity)/avg(ss_quantity) as store_sales_quantitycov
-//        ,count(sr_return_quantity) as store_returns_quantitycount
-//        ,avg(sr_return_quantity) as store_returns_quantityave
-//        ,stddev_samp(sr_return_quantity) as store_returns_quantitystdev
-//        ,stddev_samp(sr_return_quantity)/avg(sr_return_quantity) as 
store_returns_quantitycov
-//        ,count(cs_quantity) as catalog_sales_quantitycount ,avg(cs_quantity) 
as catalog_sales_quantityave
-//        ,stddev_samp(cs_quantity) as catalog_sales_quantitystdev
-//        ,stddev_samp(cs_quantity)/avg(cs_quantity) as 
catalog_sales_quantitycov
-//  from store_sales
-//      ,store_returns
-//      ,catalog_sales
-//      ,date_dim d1
-//      ,date_dim d2
-//      ,date_dim d3
-//      ,store
-//      ,item
-//  where d1.d_quarter_name = '2001Q1'
-//    and d1.d_date_sk = ss_sold_date_sk
-//    and i_item_sk = ss_item_sk
-//    and s_store_sk = ss_store_sk
-//    and ss_customer_sk = sr_customer_sk
-//    and ss_item_sk = sr_item_sk
-//    and ss_ticket_number = sr_ticket_number
-//    and sr_returned_date_sk = d2.d_date_sk
-//    and d2.d_quarter_name in ('2001Q1','2001Q2','2001Q3')
-//    and sr_customer_sk = cs_bill_customer_sk
-//    and sr_item_sk = cs_item_sk
-//    and cs_sold_date_sk = d3.d_date_sk
-//    and d3.d_quarter_name in ('2001Q1','2001Q2','2001Q3')
-//  group by i_item_id
-//          ,i_item_desc
-//          ,s_state
-//  order by i_item_id
-//          ,i_item_desc
-//          ,s_state
-// limit 100;
+select  i_item_id
+       ,i_item_desc
+       ,s_state
+       ,count(ss_quantity) as store_sales_quantitycount
+       ,avg(ss_quantity) as store_sales_quantityave
+       ,stddev_samp(ss_quantity) as store_sales_quantitystdev
+       ,stddev_samp(ss_quantity)/avg(ss_quantity) as store_sales_quantitycov
+       ,count(sr_return_quantity) as store_returns_quantitycount
+       ,avg(sr_return_quantity) as store_returns_quantityave
+       ,stddev_samp(sr_return_quantity) as store_returns_quantitystdev
+       ,stddev_samp(sr_return_quantity)/avg(sr_return_quantity) as 
store_returns_quantitycov
+       ,count(cs_quantity) as catalog_sales_quantitycount ,avg(cs_quantity) as 
catalog_sales_quantityave
+       ,stddev_samp(cs_quantity) as catalog_sales_quantitystdev
+       ,stddev_samp(cs_quantity)/avg(cs_quantity) as catalog_sales_quantitycov
+ from store_sales
+     ,store_returns
+     ,catalog_sales
+     ,date_dim d1
+     ,date_dim d2
+     ,date_dim d3
+     ,store
+     ,item
+ where d1.d_quarter_name = '2001Q1'
+   and d1.d_date_sk = ss_sold_date_sk
+   and i_item_sk = ss_item_sk
+   and s_store_sk = ss_store_sk
+   and ss_customer_sk = sr_customer_sk
+   and ss_item_sk = sr_item_sk
+   and ss_ticket_number = sr_ticket_number
+   and sr_returned_date_sk = d2.d_date_sk
+   and d2.d_quarter_name in ('2001Q1','2001Q2','2001Q3')
+   and sr_customer_sk = cs_bill_customer_sk
+   and sr_item_sk = cs_item_sk
+   and cs_sold_date_sk = d3.d_date_sk
+   and d3.d_quarter_name in ('2001Q1','2001Q2','2001Q3')
+ group by i_item_id
+         ,i_item_desc
+         ,s_state
+ order by i_item_id
+         ,i_item_desc
+         ,s_state
+limit 100;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query25.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query25.groovy
index 8ee95faf2b..ac8febe1a4 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query25.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query25.groovy
@@ -30,56 +30,56 @@ suite("query25") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_25 '''
-//     explain shape plan
+    qt_ds_shape_25 '''
+    explain shape plan
 
 
 
-// select  
-//  i_item_id
-//  ,i_item_desc
-//  ,s_store_id
-//  ,s_store_name
-//  ,sum(ss_net_profit) as store_sales_profit
-//  ,sum(sr_net_loss) as store_returns_loss
-//  ,sum(cs_net_profit) as catalog_sales_profit
-//  from
-//  store_sales
-//  ,store_returns
-//  ,catalog_sales
-//  ,date_dim d1
-//  ,date_dim d2
-//  ,date_dim d3
-//  ,store
-//  ,item
-//  where
-//  d1.d_moy = 4
-//  and d1.d_year = 2000
-//  and d1.d_date_sk = ss_sold_date_sk
-//  and i_item_sk = ss_item_sk
-//  and s_store_sk = ss_store_sk
-//  and ss_customer_sk = sr_customer_sk
-//  and ss_item_sk = sr_item_sk
-//  and ss_ticket_number = sr_ticket_number
-//  and sr_returned_date_sk = d2.d_date_sk
-//  and d2.d_moy               between 4 and  10
-//  and d2.d_year              = 2000
-//  and sr_customer_sk = cs_bill_customer_sk
-//  and sr_item_sk = cs_item_sk
-//  and cs_sold_date_sk = d3.d_date_sk
-//  and d3.d_moy               between 4 and  10 
-//  and d3.d_year              = 2000
-//  group by
-//  i_item_id
-//  ,i_item_desc
-//  ,s_store_id
-//  ,s_store_name
-//  order by
-//  i_item_id
-//  ,i_item_desc
-//  ,s_store_id
-//  ,s_store_name
-//  limit 100;
+select  
+ i_item_id
+ ,i_item_desc
+ ,s_store_id
+ ,s_store_name
+ ,sum(ss_net_profit) as store_sales_profit
+ ,sum(sr_net_loss) as store_returns_loss
+ ,sum(cs_net_profit) as catalog_sales_profit
+ from
+ store_sales
+ ,store_returns
+ ,catalog_sales
+ ,date_dim d1
+ ,date_dim d2
+ ,date_dim d3
+ ,store
+ ,item
+ where
+ d1.d_moy = 4
+ and d1.d_year = 2000
+ and d1.d_date_sk = ss_sold_date_sk
+ and i_item_sk = ss_item_sk
+ and s_store_sk = ss_store_sk
+ and ss_customer_sk = sr_customer_sk
+ and ss_item_sk = sr_item_sk
+ and ss_ticket_number = sr_ticket_number
+ and sr_returned_date_sk = d2.d_date_sk
+ and d2.d_moy               between 4 and  10
+ and d2.d_year              = 2000
+ and sr_customer_sk = cs_bill_customer_sk
+ and sr_item_sk = cs_item_sk
+ and cs_sold_date_sk = d3.d_date_sk
+ and d3.d_moy               between 4 and  10 
+ and d3.d_year              = 2000
+ group by
+ i_item_id
+ ,i_item_desc
+ ,s_store_id
+ ,s_store_name
+ order by
+ i_item_id
+ ,i_item_desc
+ ,s_store_id
+ ,s_store_name
+ limit 100;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query28.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query28.groovy
index 60d06597c0..d9c8cb0fa8 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query28.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query28.groovy
@@ -30,62 +30,62 @@ suite("query28") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_28 '''
-//     explain shape plan
+    qt_ds_shape_28 '''
+    explain shape plan
 
 
 
 
-// select  *
-// from (select avg(ss_list_price) B1_LP
-//             ,count(ss_list_price) B1_CNT
-//             ,count(distinct ss_list_price) B1_CNTD
-//       from store_sales
-//       where ss_quantity between 0 and 5
-//         and (ss_list_price between 131 and 131+10 
-//              or ss_coupon_amt between 16798 and 16798+1000
-//              or ss_wholesale_cost between 25 and 25+20)) B1,
-//      (select avg(ss_list_price) B2_LP
-//             ,count(ss_list_price) B2_CNT
-//             ,count(distinct ss_list_price) B2_CNTD
-//       from store_sales
-//       where ss_quantity between 6 and 10
-//         and (ss_list_price between 145 and 145+10
-//           or ss_coupon_amt between 14792 and 14792+1000
-//           or ss_wholesale_cost between 46 and 46+20)) B2,
-//      (select avg(ss_list_price) B3_LP
-//             ,count(ss_list_price) B3_CNT
-//             ,count(distinct ss_list_price) B3_CNTD
-//       from store_sales
-//       where ss_quantity between 11 and 15
-//         and (ss_list_price between 150 and 150+10
-//           or ss_coupon_amt between 6600 and 6600+1000
-//           or ss_wholesale_cost between 9 and 9+20)) B3,
-//      (select avg(ss_list_price) B4_LP
-//             ,count(ss_list_price) B4_CNT
-//             ,count(distinct ss_list_price) B4_CNTD
-//       from store_sales
-//       where ss_quantity between 16 and 20
-//         and (ss_list_price between 91 and 91+10
-//           or ss_coupon_amt between 13493 and 13493+1000
-//           or ss_wholesale_cost between 36 and 36+20)) B4,
-//      (select avg(ss_list_price) B5_LP
-//             ,count(ss_list_price) B5_CNT
-//             ,count(distinct ss_list_price) B5_CNTD
-//       from store_sales
-//       where ss_quantity between 21 and 25
-//         and (ss_list_price between 0 and 0+10
-//           or ss_coupon_amt between 7629 and 7629+1000
-//           or ss_wholesale_cost between 6 and 6+20)) B5,
-//      (select avg(ss_list_price) B6_LP
-//             ,count(ss_list_price) B6_CNT
-//             ,count(distinct ss_list_price) B6_CNTD
-//       from store_sales
-//       where ss_quantity between 26 and 30
-//         and (ss_list_price between 89 and 89+10
-//           or ss_coupon_amt between 15257 and 15257+1000
-//           or ss_wholesale_cost between 31 and 31+20)) B6
-// limit 100;
+select  *
+from (select avg(ss_list_price) B1_LP
+            ,count(ss_list_price) B1_CNT
+            ,count(distinct ss_list_price) B1_CNTD
+      from store_sales
+      where ss_quantity between 0 and 5
+        and (ss_list_price between 131 and 131+10 
+             or ss_coupon_amt between 16798 and 16798+1000
+             or ss_wholesale_cost between 25 and 25+20)) B1,
+     (select avg(ss_list_price) B2_LP
+            ,count(ss_list_price) B2_CNT
+            ,count(distinct ss_list_price) B2_CNTD
+      from store_sales
+      where ss_quantity between 6 and 10
+        and (ss_list_price between 145 and 145+10
+          or ss_coupon_amt between 14792 and 14792+1000
+          or ss_wholesale_cost between 46 and 46+20)) B2,
+     (select avg(ss_list_price) B3_LP
+            ,count(ss_list_price) B3_CNT
+            ,count(distinct ss_list_price) B3_CNTD
+      from store_sales
+      where ss_quantity between 11 and 15
+        and (ss_list_price between 150 and 150+10
+          or ss_coupon_amt between 6600 and 6600+1000
+          or ss_wholesale_cost between 9 and 9+20)) B3,
+     (select avg(ss_list_price) B4_LP
+            ,count(ss_list_price) B4_CNT
+            ,count(distinct ss_list_price) B4_CNTD
+      from store_sales
+      where ss_quantity between 16 and 20
+        and (ss_list_price between 91 and 91+10
+          or ss_coupon_amt between 13493 and 13493+1000
+          or ss_wholesale_cost between 36 and 36+20)) B4,
+     (select avg(ss_list_price) B5_LP
+            ,count(ss_list_price) B5_CNT
+            ,count(distinct ss_list_price) B5_CNTD
+      from store_sales
+      where ss_quantity between 21 and 25
+        and (ss_list_price between 0 and 0+10
+          or ss_coupon_amt between 7629 and 7629+1000
+          or ss_wholesale_cost between 6 and 6+20)) B5,
+     (select avg(ss_list_price) B6_LP
+            ,count(ss_list_price) B6_CNT
+            ,count(distinct ss_list_price) B6_CNTD
+      from store_sales
+      where ss_quantity between 26 and 30
+        and (ss_list_price between 89 and 89+10
+          or ss_coupon_amt between 15257 and 15257+1000
+          or ss_wholesale_cost between 31 and 31+20)) B6
+limit 100;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query29.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query29.groovy
index 471879a185..b097a0715a 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query29.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query29.groovy
@@ -30,56 +30,56 @@ suite("query29") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_29 '''
-//     explain shape plan
+    qt_ds_shape_29 '''
+    explain shape plan
 
 
 
 
-// select   
-//      i_item_id
-//     ,i_item_desc
-//     ,s_store_id
-//     ,s_store_name
-//     ,avg(ss_quantity)        as store_sales_quantity
-//     ,avg(sr_return_quantity) as store_returns_quantity
-//     ,avg(cs_quantity)        as catalog_sales_quantity
-//  from
-//     store_sales
-//    ,store_returns
-//    ,catalog_sales
-//    ,date_dim             d1
-//    ,date_dim             d2
-//    ,date_dim             d3
-//    ,store
-//    ,item
-//  where
-//      d1.d_moy               = 4 
-//  and d1.d_year              = 1999
-//  and d1.d_date_sk           = ss_sold_date_sk
-//  and i_item_sk              = ss_item_sk
-//  and s_store_sk             = ss_store_sk
-//  and ss_customer_sk         = sr_customer_sk
-//  and ss_item_sk             = sr_item_sk
-//  and ss_ticket_number       = sr_ticket_number
-//  and sr_returned_date_sk    = d2.d_date_sk
-//  and d2.d_moy               between 4 and  4 + 3 
-//  and d2.d_year              = 1999
-//  and sr_customer_sk         = cs_bill_customer_sk
-//  and sr_item_sk             = cs_item_sk
-//  and cs_sold_date_sk        = d3.d_date_sk     
-//  and d3.d_year              in (1999,1999+1,1999+2)
-//  group by
-//     i_item_id
-//    ,i_item_desc
-//    ,s_store_id
-//    ,s_store_name
-//  order by
-//     i_item_id 
-//    ,i_item_desc
-//    ,s_store_id
-//    ,s_store_name
-//  limit 100;
+select   
+     i_item_id
+    ,i_item_desc
+    ,s_store_id
+    ,s_store_name
+    ,avg(ss_quantity)        as store_sales_quantity
+    ,avg(sr_return_quantity) as store_returns_quantity
+    ,avg(cs_quantity)        as catalog_sales_quantity
+ from
+    store_sales
+   ,store_returns
+   ,catalog_sales
+   ,date_dim             d1
+   ,date_dim             d2
+   ,date_dim             d3
+   ,store
+   ,item
+ where
+     d1.d_moy               = 4 
+ and d1.d_year              = 1999
+ and d1.d_date_sk           = ss_sold_date_sk
+ and i_item_sk              = ss_item_sk
+ and s_store_sk             = ss_store_sk
+ and ss_customer_sk         = sr_customer_sk
+ and ss_item_sk             = sr_item_sk
+ and ss_ticket_number       = sr_ticket_number
+ and sr_returned_date_sk    = d2.d_date_sk
+ and d2.d_moy               between 4 and  4 + 3 
+ and d2.d_year              = 1999
+ and sr_customer_sk         = cs_bill_customer_sk
+ and sr_item_sk             = cs_item_sk
+ and cs_sold_date_sk        = d3.d_date_sk     
+ and d3.d_year              in (1999,1999+1,1999+2)
+ group by
+    i_item_id
+   ,i_item_desc
+   ,s_store_id
+   ,s_store_name
+ order by
+    i_item_id 
+   ,i_item_desc
+   ,s_store_id
+   ,s_store_name
+ limit 100;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query39.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query39.groovy
index 05a550d181..6ff2d071d7 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query39.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query39.groovy
@@ -30,37 +30,37 @@ suite("query39") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_39 '''
-//     explain shape plan
+    qt_ds_shape_39 '''
+    explain shape plan
 
 
 
 
-// with inv as
-// (select w_warehouse_name,w_warehouse_sk,i_item_sk,d_moy
-//        ,stdev,mean, case mean when 0 then null else stdev/mean end cov
-//  from(select w_warehouse_name,w_warehouse_sk,i_item_sk,d_moy
-//             ,stddev_samp(inv_quantity_on_hand) 
stdev,avg(inv_quantity_on_hand) mean
-//       from inventory
-//           ,item
-//           ,warehouse
-//           ,date_dim
-//       where inv_item_sk = i_item_sk
-//         and inv_warehouse_sk = w_warehouse_sk
-//         and inv_date_sk = d_date_sk
-//         and d_year =1998
-//       group by w_warehouse_name,w_warehouse_sk,i_item_sk,d_moy) foo
-//  where case mean when 0 then 0 else stdev/mean end > 1)
-// select inv1.w_warehouse_sk,inv1.i_item_sk,inv1.d_moy,inv1.mean, inv1.cov
-//         ,inv2.w_warehouse_sk,inv2.i_item_sk,inv2.d_moy,inv2.mean, inv2.cov
-// from inv inv1,inv inv2
-// where inv1.i_item_sk = inv2.i_item_sk
-//   and inv1.w_warehouse_sk =  inv2.w_warehouse_sk
-//   and inv1.d_moy=1
-//   and inv2.d_moy=1+1
-// order by inv1.w_warehouse_sk,inv1.i_item_sk,inv1.d_moy,inv1.mean,inv1.cov
-//         ,inv2.d_moy,inv2.mean, inv2.cov
-// ;
+with inv as
+(select w_warehouse_name,w_warehouse_sk,i_item_sk,d_moy
+       ,stdev,mean, case mean when 0 then null else stdev/mean end cov
+ from(select w_warehouse_name,w_warehouse_sk,i_item_sk,d_moy
+            ,stddev_samp(inv_quantity_on_hand) stdev,avg(inv_quantity_on_hand) 
mean
+      from inventory
+          ,item
+          ,warehouse
+          ,date_dim
+      where inv_item_sk = i_item_sk
+        and inv_warehouse_sk = w_warehouse_sk
+        and inv_date_sk = d_date_sk
+        and d_year =1998
+      group by w_warehouse_name,w_warehouse_sk,i_item_sk,d_moy) foo
+ where case mean when 0 then 0 else stdev/mean end > 1)
+select inv1.w_warehouse_sk,inv1.i_item_sk,inv1.d_moy,inv1.mean, inv1.cov
+        ,inv2.w_warehouse_sk,inv2.i_item_sk,inv2.d_moy,inv2.mean, inv2.cov
+from inv inv1,inv inv2
+where inv1.i_item_sk = inv2.i_item_sk
+  and inv1.w_warehouse_sk =  inv2.w_warehouse_sk
+  and inv1.d_moy=1
+  and inv2.d_moy=1+1
+order by inv1.w_warehouse_sk,inv1.i_item_sk,inv1.d_moy,inv1.mean,inv1.cov
+        ,inv2.d_moy,inv2.mean, inv2.cov
+;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query48.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query48.groovy
index 88dcc1fe86..6c54b2fe6e 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query48.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query48.groovy
@@ -30,76 +30,76 @@ suite("query48") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_48 '''
-//     explain shape plan
+    qt_ds_shape_48 '''
+    explain shape plan
 
 
 
 
-// select sum (ss_quantity)
-//  from store_sales, store, customer_demographics, customer_address, date_dim
-//  where s_store_sk = ss_store_sk
-//  and  ss_sold_date_sk = d_date_sk and d_year = 1999
-//  and  
-//  (
-//   (
-//    cd_demo_sk = ss_cdemo_sk
-//    and 
-//    cd_marital_status = 'U'
-//    and 
-//    cd_education_status = 'Primary'
-//    and 
-//    ss_sales_price between 100.00 and 150.00  
-//    )
-//  or
-//   (
-//   cd_demo_sk = ss_cdemo_sk
-//    and 
-//    cd_marital_status = 'W'
-//    and 
-//    cd_education_status = 'College'
-//    and 
-//    ss_sales_price between 50.00 and 100.00   
-//   )
-//  or 
-//  (
-//   cd_demo_sk = ss_cdemo_sk
-//   and 
-//    cd_marital_status = 'D'
-//    and 
-//    cd_education_status = '2 yr Degree'
-//    and 
-//    ss_sales_price between 150.00 and 200.00  
-//  )
-//  )
-//  and
-//  (
-//   (
-//   ss_addr_sk = ca_address_sk
-//   and
-//   ca_country = 'United States'
-//   and
-//   ca_state in ('MD', 'MN', 'IA')
-//   and ss_net_profit between 0 and 2000  
-//   )
-//  or
-//   (ss_addr_sk = ca_address_sk
-//   and
-//   ca_country = 'United States'
-//   and
-//   ca_state in ('VA', 'IL', 'TX')
-//   and ss_net_profit between 150 and 3000 
-//   )
-//  or
-//   (ss_addr_sk = ca_address_sk
-//   and
-//   ca_country = 'United States'
-//   and
-//   ca_state in ('MI', 'WI', 'IN')
-//   and ss_net_profit between 50 and 25000 
-//   )
-//  )
-// ;
+select sum (ss_quantity)
+ from store_sales, store, customer_demographics, customer_address, date_dim
+ where s_store_sk = ss_store_sk
+ and  ss_sold_date_sk = d_date_sk and d_year = 1999
+ and  
+ (
+  (
+   cd_demo_sk = ss_cdemo_sk
+   and 
+   cd_marital_status = 'U'
+   and 
+   cd_education_status = 'Primary'
+   and 
+   ss_sales_price between 100.00 and 150.00  
+   )
+ or
+  (
+  cd_demo_sk = ss_cdemo_sk
+   and 
+   cd_marital_status = 'W'
+   and 
+   cd_education_status = 'College'
+   and 
+   ss_sales_price between 50.00 and 100.00   
+  )
+ or 
+ (
+  cd_demo_sk = ss_cdemo_sk
+  and 
+   cd_marital_status = 'D'
+   and 
+   cd_education_status = '2 yr Degree'
+   and 
+   ss_sales_price between 150.00 and 200.00  
+ )
+ )
+ and
+ (
+  (
+  ss_addr_sk = ca_address_sk
+  and
+  ca_country = 'United States'
+  and
+  ca_state in ('MD', 'MN', 'IA')
+  and ss_net_profit between 0 and 2000  
+  )
+ or
+  (ss_addr_sk = ca_address_sk
+  and
+  ca_country = 'United States'
+  and
+  ca_state in ('VA', 'IL', 'TX')
+  and ss_net_profit between 150 and 3000 
+  )
+ or
+  (ss_addr_sk = ca_address_sk
+  and
+  ca_country = 'United States'
+  and
+  ca_state in ('MI', 'WI', 'IN')
+  and ss_net_profit between 50 and 25000 
+  )
+ )
+;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query50.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query50.groovy
index bf20c965a0..56efd40ac3 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query50.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query50.groovy
@@ -30,68 +30,68 @@ suite("query50") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_50 '''
-//     explain shape plan
+    qt_ds_shape_50 '''
+    explain shape plan
 
 
 
 
-// select  
-//    s_store_name
-//   ,s_company_id
-//   ,s_street_number
-//   ,s_street_name
-//   ,s_street_type
-//   ,s_suite_number
-//   ,s_city
-//   ,s_county
-//   ,s_state
-//   ,s_zip
-//   ,sum(case when (sr_returned_date_sk - ss_sold_date_sk <= 30 ) then 1 else 
0 end)  as "30 days" 
-//   ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 30) and 
-//                  (sr_returned_date_sk - ss_sold_date_sk <= 60) then 1 else 
0 end )  as "31-60 days" 
-//   ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 60) and 
-//                  (sr_returned_date_sk - ss_sold_date_sk <= 90) then 1 else 
0 end)  as "61-90 days" 
-//   ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 90) and
-//                  (sr_returned_date_sk - ss_sold_date_sk <= 120) then 1 else 
0 end)  as "91-120 days" 
-//   ,sum(case when (sr_returned_date_sk - ss_sold_date_sk  > 120) then 1 else 
0 end)  as ">120 days" 
-// from
-//    store_sales
-//   ,store_returns
-//   ,store
-//   ,date_dim d1
-//   ,date_dim d2
-// where
-//     d2.d_year = 2001
-// and d2.d_moy  = 8
-// and ss_ticket_number = sr_ticket_number
-// and ss_item_sk = sr_item_sk
-// and ss_sold_date_sk   = d1.d_date_sk
-// and sr_returned_date_sk   = d2.d_date_sk
-// and ss_customer_sk = sr_customer_sk
-// and ss_store_sk = s_store_sk
-// group by
-//    s_store_name
-//   ,s_company_id
-//   ,s_street_number
-//   ,s_street_name
-//   ,s_street_type
-//   ,s_suite_number
-//   ,s_city
-//   ,s_county
-//   ,s_state
-//   ,s_zip
-// order by s_store_name
-//         ,s_company_id
-//         ,s_street_number
-//         ,s_street_name
-//         ,s_street_type
-//         ,s_suite_number
-//         ,s_city
-//         ,s_county
-//         ,s_state
-//         ,s_zip
-// limit 100;
+select  
+   s_store_name
+  ,s_company_id
+  ,s_street_number
+  ,s_street_name
+  ,s_street_type
+  ,s_suite_number
+  ,s_city
+  ,s_county
+  ,s_state
+  ,s_zip
+  ,sum(case when (sr_returned_date_sk - ss_sold_date_sk <= 30 ) then 1 else 0 
end)  as "30 days" 
+  ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 30) and 
+                 (sr_returned_date_sk - ss_sold_date_sk <= 60) then 1 else 0 
end )  as "31-60 days" 
+  ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 60) and 
+                 (sr_returned_date_sk - ss_sold_date_sk <= 90) then 1 else 0 
end)  as "61-90 days" 
+  ,sum(case when (sr_returned_date_sk - ss_sold_date_sk > 90) and
+                 (sr_returned_date_sk - ss_sold_date_sk <= 120) then 1 else 0 
end)  as "91-120 days" 
+  ,sum(case when (sr_returned_date_sk - ss_sold_date_sk  > 120) then 1 else 0 
end)  as ">120 days" 
+from
+   store_sales
+  ,store_returns
+  ,store
+  ,date_dim d1
+  ,date_dim d2
+where
+    d2.d_year = 2001
+and d2.d_moy  = 8
+and ss_ticket_number = sr_ticket_number
+and ss_item_sk = sr_item_sk
+and ss_sold_date_sk   = d1.d_date_sk
+and sr_returned_date_sk   = d2.d_date_sk
+and ss_customer_sk = sr_customer_sk
+and ss_store_sk = s_store_sk
+group by
+   s_store_name
+  ,s_company_id
+  ,s_street_number
+  ,s_street_name
+  ,s_street_type
+  ,s_suite_number
+  ,s_city
+  ,s_county
+  ,s_state
+  ,s_zip
+order by s_store_name
+        ,s_company_id
+        ,s_street_number
+        ,s_street_name
+        ,s_street_type
+        ,s_suite_number
+        ,s_city
+        ,s_county
+        ,s_state
+        ,s_zip
+limit 100;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query59.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query59.groovy
index e9eb44aa2d..f36074309c 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query59.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query59.groovy
@@ -30,52 +30,52 @@ suite("query59") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_59 '''
-//     explain shape plan
+    qt_ds_shape_59 '''
+    explain shape plan
 
 
 
-// with wss as 
-//  (select d_week_seq,
-//         ss_store_sk,
-//         sum(case when (d_day_name='Sunday') then ss_sales_price else null 
end) sun_sales,
-//         sum(case when (d_day_name='Monday') then ss_sales_price else null 
end) mon_sales,
-//         sum(case when (d_day_name='Tuesday') then ss_sales_price else  null 
end) tue_sales,
-//         sum(case when (d_day_name='Wednesday') then ss_sales_price else 
null end) wed_sales,
-//         sum(case when (d_day_name='Thursday') then ss_sales_price else null 
end) thu_sales,
-//         sum(case when (d_day_name='Friday') then ss_sales_price else null 
end) fri_sales,
-//         sum(case when (d_day_name='Saturday') then ss_sales_price else null 
end) sat_sales
-//  from store_sales,date_dim
-//  where d_date_sk = ss_sold_date_sk
-//  group by d_week_seq,ss_store_sk
-//  )
-//   select  s_store_name1,s_store_id1,d_week_seq1
-//        ,sun_sales1/sun_sales2,mon_sales1/mon_sales2
-//        ,tue_sales1/tue_sales2,wed_sales1/wed_sales2,thu_sales1/thu_sales2
-//        ,fri_sales1/fri_sales2,sat_sales1/sat_sales2
-//  from
-//  (select s_store_name s_store_name1,wss.d_week_seq d_week_seq1
-//         ,s_store_id s_store_id1,sun_sales sun_sales1
-//         ,mon_sales mon_sales1,tue_sales tue_sales1
-//         ,wed_sales wed_sales1,thu_sales thu_sales1
-//         ,fri_sales fri_sales1,sat_sales sat_sales1
-//   from wss,store,date_dim d
-//   where d.d_week_seq = wss.d_week_seq and
-//         ss_store_sk = s_store_sk and 
-//         d_month_seq between 1196 and 1196 + 11) y,
-//  (select s_store_name s_store_name2,wss.d_week_seq d_week_seq2
-//         ,s_store_id s_store_id2,sun_sales sun_sales2
-//         ,mon_sales mon_sales2,tue_sales tue_sales2
-//         ,wed_sales wed_sales2,thu_sales thu_sales2
-//         ,fri_sales fri_sales2,sat_sales sat_sales2
-//   from wss,store,date_dim d
-//   where d.d_week_seq = wss.d_week_seq and
-//         ss_store_sk = s_store_sk and 
-//         d_month_seq between 1196+ 12 and 1196 + 23) x
-//  where s_store_id1=s_store_id2
-//    and d_week_seq1=d_week_seq2-52
-//  order by s_store_name1,s_store_id1,d_week_seq1
-// limit 100;
+with wss as 
+ (select d_week_seq,
+        ss_store_sk,
+        sum(case when (d_day_name='Sunday') then ss_sales_price else null end) 
sun_sales,
+        sum(case when (d_day_name='Monday') then ss_sales_price else null end) 
mon_sales,
+        sum(case when (d_day_name='Tuesday') then ss_sales_price else  null 
end) tue_sales,
+        sum(case when (d_day_name='Wednesday') then ss_sales_price else null 
end) wed_sales,
+        sum(case when (d_day_name='Thursday') then ss_sales_price else null 
end) thu_sales,
+        sum(case when (d_day_name='Friday') then ss_sales_price else null end) 
fri_sales,
+        sum(case when (d_day_name='Saturday') then ss_sales_price else null 
end) sat_sales
+ from store_sales,date_dim
+ where d_date_sk = ss_sold_date_sk
+ group by d_week_seq,ss_store_sk
+ )
+  select  s_store_name1,s_store_id1,d_week_seq1
+       ,sun_sales1/sun_sales2,mon_sales1/mon_sales2
+       ,tue_sales1/tue_sales2,wed_sales1/wed_sales2,thu_sales1/thu_sales2
+       ,fri_sales1/fri_sales2,sat_sales1/sat_sales2
+ from
+ (select s_store_name s_store_name1,wss.d_week_seq d_week_seq1
+        ,s_store_id s_store_id1,sun_sales sun_sales1
+        ,mon_sales mon_sales1,tue_sales tue_sales1
+        ,wed_sales wed_sales1,thu_sales thu_sales1
+        ,fri_sales fri_sales1,sat_sales sat_sales1
+  from wss,store,date_dim d
+  where d.d_week_seq = wss.d_week_seq and
+        ss_store_sk = s_store_sk and 
+        d_month_seq between 1196 and 1196 + 11) y,
+ (select s_store_name s_store_name2,wss.d_week_seq d_week_seq2
+        ,s_store_id s_store_id2,sun_sales sun_sales2
+        ,mon_sales mon_sales2,tue_sales tue_sales2
+        ,wed_sales wed_sales2,thu_sales thu_sales2
+        ,fri_sales fri_sales2,sat_sales sat_sales2
+  from wss,store,date_dim d
+  where d.d_week_seq = wss.d_week_seq and
+        ss_store_sk = s_store_sk and 
+        d_month_seq between 1196+ 12 and 1196 + 23) x
+ where s_store_id1=s_store_id2
+   and d_week_seq1=d_week_seq2-52
+ order by s_store_name1,s_store_id1,d_week_seq1
+limit 100;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query61.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query61.groovy
index d6a355b26f..183892d1f0 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query61.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query61.groovy
@@ -30,53 +30,53 @@ suite("query61") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_61 '''
-//     explain shape plan
+    qt_ds_shape_61 '''
+    explain shape plan
 
 
 
 
-// select  promotions,total,cast(promotions as decimal(15,4))/cast(total as 
decimal(15,4))*100
-// from
-//   (select sum(ss_ext_sales_price) promotions
-//    from  store_sales
-//         ,store
-//         ,promotion
-//         ,date_dim
-//         ,customer
-//         ,customer_address 
-//         ,item
-//    where ss_sold_date_sk = d_date_sk
-//    and   ss_store_sk = s_store_sk
-//    and   ss_promo_sk = p_promo_sk
-//    and   ss_customer_sk= c_customer_sk
-//    and   ca_address_sk = c_current_addr_sk
-//    and   ss_item_sk = i_item_sk 
-//    and   ca_gmt_offset = -7
-//    and   i_category = 'Jewelry'
-//    and   (p_channel_dmail = 'Y' or p_channel_email = 'Y' or p_channel_tv = 
'Y')
-//    and   s_gmt_offset = -7
-//    and   d_year = 1999
-//    and   d_moy  = 11) promotional_sales,
-//   (select sum(ss_ext_sales_price) total
-//    from  store_sales
-//         ,store
-//         ,date_dim
-//         ,customer
-//         ,customer_address
-//         ,item
-//    where ss_sold_date_sk = d_date_sk
-//    and   ss_store_sk = s_store_sk
-//    and   ss_customer_sk= c_customer_sk
-//    and   ca_address_sk = c_current_addr_sk
-//    and   ss_item_sk = i_item_sk
-//    and   ca_gmt_offset = -7
-//    and   i_category = 'Jewelry'
-//    and   s_gmt_offset = -7
-//    and   d_year = 1999
-//    and   d_moy  = 11) all_sales
-// order by promotions, total
-// limit 100;
+select  promotions,total,cast(promotions as decimal(15,4))/cast(total as 
decimal(15,4))*100
+from
+  (select sum(ss_ext_sales_price) promotions
+   from  store_sales
+        ,store
+        ,promotion
+        ,date_dim
+        ,customer
+        ,customer_address 
+        ,item
+   where ss_sold_date_sk = d_date_sk
+   and   ss_store_sk = s_store_sk
+   and   ss_promo_sk = p_promo_sk
+   and   ss_customer_sk= c_customer_sk
+   and   ca_address_sk = c_current_addr_sk
+   and   ss_item_sk = i_item_sk 
+   and   ca_gmt_offset = -7
+   and   i_category = 'Jewelry'
+   and   (p_channel_dmail = 'Y' or p_channel_email = 'Y' or p_channel_tv = 'Y')
+   and   s_gmt_offset = -7
+   and   d_year = 1999
+   and   d_moy  = 11) promotional_sales,
+  (select sum(ss_ext_sales_price) total
+   from  store_sales
+        ,store
+        ,date_dim
+        ,customer
+        ,customer_address
+        ,item
+   where ss_sold_date_sk = d_date_sk
+   and   ss_store_sk = s_store_sk
+   and   ss_customer_sk= c_customer_sk
+   and   ca_address_sk = c_current_addr_sk
+   and   ss_item_sk = i_item_sk
+   and   ca_gmt_offset = -7
+   and   i_category = 'Jewelry'
+   and   s_gmt_offset = -7
+   and   d_year = 1999
+   and   d_moy  = 11) all_sales
+order by promotions, total
+limit 100;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query64.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query64.groovy
index f0361a55d5..f4ff8f0a8e 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query64.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query64.groovy
@@ -30,130 +30,128 @@ suite("query64") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_64 '''
-//           explain shape plan
+    def ds64 = '''
+ with cs_ui as
+  (select cs_item_sk
+         ,sum(cs_ext_list_price) as 
sale,sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit) as refund
+   from catalog_sales
+       ,catalog_returns
+   where cs_item_sk = cr_item_sk
+     and cs_order_number = cr_order_number
+   group by cs_item_sk
+   having 
sum(cs_ext_list_price)>2*sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit)),
+ cross_sales as
+  (select i_product_name product_name
+      ,i_item_sk item_sk
+      ,s_store_name store_name
+      ,s_zip store_zip
+      ,ad1.ca_street_number b_street_number
+      ,ad1.ca_street_name b_street_name
+      ,ad1.ca_city b_city
+      ,ad1.ca_zip b_zip
+      ,ad2.ca_street_number c_street_number
+      ,ad2.ca_street_name c_street_name
+      ,ad2.ca_city c_city
+      ,ad2.ca_zip c_zip
+      ,d1.d_year as syear
+      ,d2.d_year as fsyear
+      ,d3.d_year s2year
+      ,count(*) cnt
+      ,sum(ss_wholesale_cost) s1
+      ,sum(ss_list_price) s2
+      ,sum(ss_coupon_amt) s3
+   FROM   store_sales
+         ,store_returns
+         ,cs_ui
+         ,date_dim d1
+         ,date_dim d2
+         ,date_dim d3
+         ,store
+         ,customer
+         ,customer_demographics cd1
+         ,customer_demographics cd2
+         ,promotion
+         ,household_demographics hd1
+         ,household_demographics hd2
+         ,customer_address ad1
+         ,customer_address ad2
+         ,income_band ib1
+         ,income_band ib2
+         ,item
+   WHERE  ss_store_sk = s_store_sk AND
+          ss_sold_date_sk = d1.d_date_sk AND
+          ss_customer_sk = c_customer_sk AND
+          ss_cdemo_sk= cd1.cd_demo_sk AND
+          ss_hdemo_sk = hd1.hd_demo_sk AND
+          ss_addr_sk = ad1.ca_address_sk and
+          ss_item_sk = i_item_sk and
+          ss_item_sk = sr_item_sk and
+          ss_ticket_number = sr_ticket_number and
+          ss_item_sk = cs_ui.cs_item_sk and
+          c_current_cdemo_sk = cd2.cd_demo_sk AND
+          c_current_hdemo_sk = hd2.hd_demo_sk AND
+          c_current_addr_sk = ad2.ca_address_sk and
+          c_first_sales_date_sk = d2.d_date_sk and
+          c_first_shipto_date_sk = d3.d_date_sk and
+          ss_promo_sk = p_promo_sk and
+          hd1.hd_income_band_sk = ib1.ib_income_band_sk and
+          hd2.hd_income_band_sk = ib2.ib_income_band_sk and
+          cd1.cd_marital_status <> cd2.cd_marital_status and
+          i_color in 
('blanched','medium','brown','chocolate','burlywood','drab') and
+          i_current_price between 23 and 23 + 10 and
+          i_current_price between 23 + 1 and 23 + 15
+ group by i_product_name
+        ,i_item_sk
+        ,s_store_name
+        ,s_zip
+        ,ad1.ca_street_number
+        ,ad1.ca_street_name
+        ,ad1.ca_city
+        ,ad1.ca_zip
+        ,ad2.ca_street_number
+        ,ad2.ca_street_name
+        ,ad2.ca_city
+        ,ad2.ca_zip
+        ,d1.d_year
+        ,d2.d_year
+        ,d3.d_year
+ )
+ select cs1.product_name
+      ,cs1.store_name
+      ,cs1.store_zip
+      ,cs1.b_street_number
+      ,cs1.b_street_name
+      ,cs1.b_city
+      ,cs1.b_zip
+      ,cs1.c_street_number
+      ,cs1.c_street_name
+      ,cs1.c_city
+      ,cs1.c_zip
+      ,cs1.syear
+      ,cs1.cnt
+      ,cs1.s1 as s11
+      ,cs1.s2 as s21
+      ,cs1.s3 as s31
+      ,cs2.s1 as s12
+      ,cs2.s2 as s22
+      ,cs2.s3 as s32
+      ,cs2.syear
+      ,cs2.cnt
+ from cross_sales cs1,cross_sales cs2
+ where cs1.item_sk=cs2.item_sk and
+      cs1.syear = 2001 and
+      cs2.syear = 2001 + 1 and
+      cs2.cnt <= cs1.cnt and
+      cs1.store_name = cs2.store_name and
+      cs1.store_zip = cs2.store_zip
+ order by cs1.product_name
+        ,cs1.store_name
+        ,cs2.cnt
+        ,cs1.s1
+        ,cs2.s1;
 
+    '''
 
+//    qt_ds_shape_64 'explain shape plan ' + ds64
 
-
-//  with cs_ui as
-//   (select cs_item_sk
-//          ,sum(cs_ext_list_price) as 
sale,sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit) as refund
-//    from catalog_sales
-//        ,catalog_returns
-//    where cs_item_sk = cr_item_sk
-//      and cs_order_number = cr_order_number
-//    group by cs_item_sk
-//    having 
sum(cs_ext_list_price)>2*sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit)),
-//  cross_sales as
-//   (select i_product_name product_name
-//       ,i_item_sk item_sk
-//       ,s_store_name store_name
-//       ,s_zip store_zip
-//       ,ad1.ca_street_number b_street_number
-//       ,ad1.ca_street_name b_street_name
-//       ,ad1.ca_city b_city
-//       ,ad1.ca_zip b_zip
-//       ,ad2.ca_street_number c_street_number
-//       ,ad2.ca_street_name c_street_name
-//       ,ad2.ca_city c_city
-//       ,ad2.ca_zip c_zip
-//       ,d1.d_year as syear
-//       ,d2.d_year as fsyear
-//       ,d3.d_year s2year
-//       ,count(*) cnt
-//       ,sum(ss_wholesale_cost) s1
-//       ,sum(ss_list_price) s2
-//       ,sum(ss_coupon_amt) s3
-//    FROM   store_sales
-//          ,store_returns
-//          ,cs_ui
-//          ,date_dim d1
-//          ,date_dim d2
-//          ,date_dim d3
-//          ,store
-//          ,customer
-//          ,customer_demographics cd1
-//          ,customer_demographics cd2
-//          ,promotion
-//          ,household_demographics hd1
-//          ,household_demographics hd2
-//          ,customer_address ad1
-//          ,customer_address ad2
-//          ,income_band ib1
-//          ,income_band ib2
-//          ,item
-//    WHERE  ss_store_sk = s_store_sk AND
-//           ss_sold_date_sk = d1.d_date_sk AND
-//           ss_customer_sk = c_customer_sk AND
-//           ss_cdemo_sk= cd1.cd_demo_sk AND
-//           ss_hdemo_sk = hd1.hd_demo_sk AND
-//           ss_addr_sk = ad1.ca_address_sk and
-//           ss_item_sk = i_item_sk and
-//           ss_item_sk = sr_item_sk and
-//           ss_ticket_number = sr_ticket_number and
-//           ss_item_sk = cs_ui.cs_item_sk and
-//           c_current_cdemo_sk = cd2.cd_demo_sk AND
-//           c_current_hdemo_sk = hd2.hd_demo_sk AND
-//           c_current_addr_sk = ad2.ca_address_sk and
-//           c_first_sales_date_sk = d2.d_date_sk and
-//           c_first_shipto_date_sk = d3.d_date_sk and
-//           ss_promo_sk = p_promo_sk and
-//           hd1.hd_income_band_sk = ib1.ib_income_band_sk and
-//           hd2.hd_income_band_sk = ib2.ib_income_band_sk and
-//           cd1.cd_marital_status <> cd2.cd_marital_status and
-//           i_color in 
('blanched','medium','brown','chocolate','burlywood','drab') and
-//           i_current_price between 23 and 23 + 10 and
-//           i_current_price between 23 + 1 and 23 + 15
-//  group by i_product_name
-//         ,i_item_sk
-//         ,s_store_name
-//         ,s_zip
-//         ,ad1.ca_street_number
-//         ,ad1.ca_street_name
-//         ,ad1.ca_city
-//         ,ad1.ca_zip
-//         ,ad2.ca_street_number
-//         ,ad2.ca_street_name
-//         ,ad2.ca_city
-//         ,ad2.ca_zip
-//         ,d1.d_year
-//         ,d2.d_year
-//         ,d3.d_year
-//  )
-//  select cs1.product_name
-//       ,cs1.store_name
-//       ,cs1.store_zip
-//       ,cs1.b_street_number
-//       ,cs1.b_street_name
-//       ,cs1.b_city
-//       ,cs1.b_zip
-//       ,cs1.c_street_number
-//       ,cs1.c_street_name
-//       ,cs1.c_city
-//       ,cs1.c_zip
-//       ,cs1.syear
-//       ,cs1.cnt
-//       ,cs1.s1 as s11
-//       ,cs1.s2 as s21
-//       ,cs1.s3 as s31
-//       ,cs2.s1 as s12
-//       ,cs2.s2 as s22
-//       ,cs2.s3 as s32
-//       ,cs2.syear
-//       ,cs2.cnt
-//  from cross_sales cs1,cross_sales cs2
-//  where cs1.item_sk=cs2.item_sk and
-//       cs1.syear = 2001 and
-//       cs2.syear = 2001 + 1 and
-//       cs2.cnt <= cs1.cnt and
-//       cs1.store_name = cs2.store_name and
-//       cs1.store_zip = cs2.store_zip
-//  order by cs1.product_name
-//         ,cs1.store_name
-//         ,cs2.cnt
-//         ,cs1.s1
-//         ,cs2.s1;
-
-//     '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query85.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query85.groovy
index 52a8f621f6..208ef6b658 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query85.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query85.groovy
@@ -30,93 +30,93 @@ suite("query85") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_85 '''
-//     explain shape plan
+    qt_ds_shape_85 '''
+    explain shape plan
 
 
 
 
-// select  substr(r_reason_desc,1,20)
-//        ,avg(ws_quantity)
-//        ,avg(wr_refunded_cash)
-//        ,avg(wr_fee)
-//  from web_sales, web_returns, web_page, customer_demographics cd1,
-//       customer_demographics cd2, customer_address, date_dim, reason 
-//  where ws_web_page_sk = wp_web_page_sk
-//    and ws_item_sk = wr_item_sk
-//    and ws_order_number = wr_order_number
-//    and ws_sold_date_sk = d_date_sk and d_year = 2000
-//    and cd1.cd_demo_sk = wr_refunded_cdemo_sk 
-//    and cd2.cd_demo_sk = wr_returning_cdemo_sk
-//    and ca_address_sk = wr_refunded_addr_sk
-//    and r_reason_sk = wr_reason_sk
-//    and
-//    (
-//     (
-//      cd1.cd_marital_status = 'M'
-//      and
-//      cd1.cd_marital_status = cd2.cd_marital_status
-//      and
-//      cd1.cd_education_status = '4 yr Degree'
-//      and 
-//      cd1.cd_education_status = cd2.cd_education_status
-//      and
-//      ws_sales_price between 100.00 and 150.00
-//     )
-//    or
-//     (
-//      cd1.cd_marital_status = 'S'
-//      and
-//      cd1.cd_marital_status = cd2.cd_marital_status
-//      and
-//      cd1.cd_education_status = 'Secondary' 
-//      and
-//      cd1.cd_education_status = cd2.cd_education_status
-//      and
-//      ws_sales_price between 50.00 and 100.00
-//     )
-//    or
-//     (
-//      cd1.cd_marital_status = 'W'
-//      and
-//      cd1.cd_marital_status = cd2.cd_marital_status
-//      and
-//      cd1.cd_education_status = 'Advanced Degree'
-//      and
-//      cd1.cd_education_status = cd2.cd_education_status
-//      and
-//      ws_sales_price between 150.00 and 200.00
-//     )
-//    )
-//    and
-//    (
-//     (
-//      ca_country = 'United States'
-//      and
-//      ca_state in ('FL', 'TX', 'DE')
-//      and ws_net_profit between 100 and 200  
-//     )
-//     or
-//     (
-//      ca_country = 'United States'
-//      and
-//      ca_state in ('IN', 'ND', 'ID')
-//      and ws_net_profit between 150 and 300  
-//     )
-//     or
-//     (
-//      ca_country = 'United States'
-//      and
-//      ca_state in ('MT', 'IL', 'OH')
-//      and ws_net_profit between 50 and 250  
-//     )
-//    )
-// group by r_reason_desc
-// order by substr(r_reason_desc,1,20)
-//         ,avg(ws_quantity)
-//         ,avg(wr_refunded_cash)
-//         ,avg(wr_fee)
-// limit 100;
+select  substr(r_reason_desc,1,20)
+       ,avg(ws_quantity)
+       ,avg(wr_refunded_cash)
+       ,avg(wr_fee)
+ from web_sales, web_returns, web_page, customer_demographics cd1,
+      customer_demographics cd2, customer_address, date_dim, reason 
+ where ws_web_page_sk = wp_web_page_sk
+   and ws_item_sk = wr_item_sk
+   and ws_order_number = wr_order_number
+   and ws_sold_date_sk = d_date_sk and d_year = 2000
+   and cd1.cd_demo_sk = wr_refunded_cdemo_sk 
+   and cd2.cd_demo_sk = wr_returning_cdemo_sk
+   and ca_address_sk = wr_refunded_addr_sk
+   and r_reason_sk = wr_reason_sk
+   and
+   (
+    (
+     cd1.cd_marital_status = 'M'
+     and
+     cd1.cd_marital_status = cd2.cd_marital_status
+     and
+     cd1.cd_education_status = '4 yr Degree'
+     and 
+     cd1.cd_education_status = cd2.cd_education_status
+     and
+     ws_sales_price between 100.00 and 150.00
+    )
+   or
+    (
+     cd1.cd_marital_status = 'S'
+     and
+     cd1.cd_marital_status = cd2.cd_marital_status
+     and
+     cd1.cd_education_status = 'Secondary' 
+     and
+     cd1.cd_education_status = cd2.cd_education_status
+     and
+     ws_sales_price between 50.00 and 100.00
+    )
+   or
+    (
+     cd1.cd_marital_status = 'W'
+     and
+     cd1.cd_marital_status = cd2.cd_marital_status
+     and
+     cd1.cd_education_status = 'Advanced Degree'
+     and
+     cd1.cd_education_status = cd2.cd_education_status
+     and
+     ws_sales_price between 150.00 and 200.00
+    )
+   )
+   and
+   (
+    (
+     ca_country = 'United States'
+     and
+     ca_state in ('FL', 'TX', 'DE')
+     and ws_net_profit between 100 and 200  
+    )
+    or
+    (
+     ca_country = 'United States'
+     and
+     ca_state in ('IN', 'ND', 'ID')
+     and ws_net_profit between 150 and 300  
+    )
+    or
+    (
+     ca_country = 'United States'
+     and
+     ca_state in ('MT', 'IL', 'OH')
+     and ws_net_profit between 50 and 250  
+    )
+   )
+group by r_reason_desc
+order by substr(r_reason_desc,1,20)
+        ,avg(ws_quantity)
+        ,avg(wr_refunded_cash)
+        ,avg(wr_fee)
+limit 100;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query88.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query88.groovy
index b4bb1ab763..917d5bbb71 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query88.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query88.groovy
@@ -30,103 +30,103 @@ suite("query88") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_88 '''
-//     explain shape plan
+    qt_ds_shape_88 '''
+    explain shape plan
 
 
 
 
-// select  *
-// from
-//  (select count(*) h8_30_to_9
-//  from store_sales, household_demographics , time_dim, store
-//  where ss_sold_time_sk = time_dim.t_time_sk   
-//      and ss_hdemo_sk = household_demographics.hd_demo_sk 
-//      and ss_store_sk = s_store_sk
-//      and time_dim.t_hour = 8
-//      and time_dim.t_minute >= 30
-//      and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
-//           (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
-//           (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2)) 
-//      and store.s_store_name = 'ese') s1,
-//  (select count(*) h9_to_9_30 
-//  from store_sales, household_demographics , time_dim, store
-//  where ss_sold_time_sk = time_dim.t_time_sk
-//      and ss_hdemo_sk = household_demographics.hd_demo_sk
-//      and ss_store_sk = s_store_sk 
-//      and time_dim.t_hour = 9 
-//      and time_dim.t_minute < 30
-//      and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
-//           (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
-//           (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
-//      and store.s_store_name = 'ese') s2,
-//  (select count(*) h9_30_to_10 
-//  from store_sales, household_demographics , time_dim, store
-//  where ss_sold_time_sk = time_dim.t_time_sk
-//      and ss_hdemo_sk = household_demographics.hd_demo_sk
-//      and ss_store_sk = s_store_sk
-//      and time_dim.t_hour = 9
-//      and time_dim.t_minute >= 30
-//      and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
-//           (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
-//           (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
-//      and store.s_store_name = 'ese') s3,
-//  (select count(*) h10_to_10_30
-//  from store_sales, household_demographics , time_dim, store
-//  where ss_sold_time_sk = time_dim.t_time_sk
-//      and ss_hdemo_sk = household_demographics.hd_demo_sk
-//      and ss_store_sk = s_store_sk
-//      and time_dim.t_hour = 10 
-//      and time_dim.t_minute < 30
-//      and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
-//           (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
-//           (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
-//      and store.s_store_name = 'ese') s4,
-//  (select count(*) h10_30_to_11
-//  from store_sales, household_demographics , time_dim, store
-//  where ss_sold_time_sk = time_dim.t_time_sk
-//      and ss_hdemo_sk = household_demographics.hd_demo_sk
-//      and ss_store_sk = s_store_sk
-//      and time_dim.t_hour = 10 
-//      and time_dim.t_minute >= 30
-//      and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
-//           (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
-//           (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
-//      and store.s_store_name = 'ese') s5,
-//  (select count(*) h11_to_11_30
-//  from store_sales, household_demographics , time_dim, store
-//  where ss_sold_time_sk = time_dim.t_time_sk
-//      and ss_hdemo_sk = household_demographics.hd_demo_sk
-//      and ss_store_sk = s_store_sk 
-//      and time_dim.t_hour = 11
-//      and time_dim.t_minute < 30
-//      and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
-//           (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
-//           (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
-//      and store.s_store_name = 'ese') s6,
-//  (select count(*) h11_30_to_12
-//  from store_sales, household_demographics , time_dim, store
-//  where ss_sold_time_sk = time_dim.t_time_sk
-//      and ss_hdemo_sk = household_demographics.hd_demo_sk
-//      and ss_store_sk = s_store_sk
-//      and time_dim.t_hour = 11
-//      and time_dim.t_minute >= 30
-//      and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
-//           (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
-//           (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
-//      and store.s_store_name = 'ese') s7,
-//  (select count(*) h12_to_12_30
-//  from store_sales, household_demographics , time_dim, store
-//  where ss_sold_time_sk = time_dim.t_time_sk
-//      and ss_hdemo_sk = household_demographics.hd_demo_sk
-//      and ss_store_sk = s_store_sk
-//      and time_dim.t_hour = 12
-//      and time_dim.t_minute < 30
-//      and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
-//           (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
-//           (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
-//      and store.s_store_name = 'ese') s8
-// ;
+select  *
+from
+ (select count(*) h8_30_to_9
+ from store_sales, household_demographics , time_dim, store
+ where ss_sold_time_sk = time_dim.t_time_sk   
+     and ss_hdemo_sk = household_demographics.hd_demo_sk 
+     and ss_store_sk = s_store_sk
+     and time_dim.t_hour = 8
+     and time_dim.t_minute >= 30
+     and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
+          (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
+          (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2)) 
+     and store.s_store_name = 'ese') s1,
+ (select count(*) h9_to_9_30 
+ from store_sales, household_demographics , time_dim, store
+ where ss_sold_time_sk = time_dim.t_time_sk
+     and ss_hdemo_sk = household_demographics.hd_demo_sk
+     and ss_store_sk = s_store_sk 
+     and time_dim.t_hour = 9 
+     and time_dim.t_minute < 30
+     and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
+          (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
+          (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
+     and store.s_store_name = 'ese') s2,
+ (select count(*) h9_30_to_10 
+ from store_sales, household_demographics , time_dim, store
+ where ss_sold_time_sk = time_dim.t_time_sk
+     and ss_hdemo_sk = household_demographics.hd_demo_sk
+     and ss_store_sk = s_store_sk
+     and time_dim.t_hour = 9
+     and time_dim.t_minute >= 30
+     and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
+          (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
+          (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
+     and store.s_store_name = 'ese') s3,
+ (select count(*) h10_to_10_30
+ from store_sales, household_demographics , time_dim, store
+ where ss_sold_time_sk = time_dim.t_time_sk
+     and ss_hdemo_sk = household_demographics.hd_demo_sk
+     and ss_store_sk = s_store_sk
+     and time_dim.t_hour = 10 
+     and time_dim.t_minute < 30
+     and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
+          (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
+          (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
+     and store.s_store_name = 'ese') s4,
+ (select count(*) h10_30_to_11
+ from store_sales, household_demographics , time_dim, store
+ where ss_sold_time_sk = time_dim.t_time_sk
+     and ss_hdemo_sk = household_demographics.hd_demo_sk
+     and ss_store_sk = s_store_sk
+     and time_dim.t_hour = 10 
+     and time_dim.t_minute >= 30
+     and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
+          (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
+          (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
+     and store.s_store_name = 'ese') s5,
+ (select count(*) h11_to_11_30
+ from store_sales, household_demographics , time_dim, store
+ where ss_sold_time_sk = time_dim.t_time_sk
+     and ss_hdemo_sk = household_demographics.hd_demo_sk
+     and ss_store_sk = s_store_sk 
+     and time_dim.t_hour = 11
+     and time_dim.t_minute < 30
+     and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
+          (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
+          (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
+     and store.s_store_name = 'ese') s6,
+ (select count(*) h11_30_to_12
+ from store_sales, household_demographics , time_dim, store
+ where ss_sold_time_sk = time_dim.t_time_sk
+     and ss_hdemo_sk = household_demographics.hd_demo_sk
+     and ss_store_sk = s_store_sk
+     and time_dim.t_hour = 11
+     and time_dim.t_minute >= 30
+     and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
+          (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
+          (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
+     and store.s_store_name = 'ese') s7,
+ (select count(*) h12_to_12_30
+ from store_sales, household_demographics , time_dim, store
+ where ss_sold_time_sk = time_dim.t_time_sk
+     and ss_hdemo_sk = household_demographics.hd_demo_sk
+     and ss_store_sk = s_store_sk
+     and time_dim.t_hour = 12
+     and time_dim.t_minute < 30
+     and ((household_demographics.hd_dep_count = -1 and 
household_demographics.hd_vehicle_count<=-1+2) or
+          (household_demographics.hd_dep_count = 4 and 
household_demographics.hd_vehicle_count<=4+2) or
+          (household_demographics.hd_dep_count = 3 and 
household_demographics.hd_vehicle_count<=3+2))
+     and store.s_store_name = 'ese') s8
+;
 
-//     '''
+    '''
 }
diff --git 
a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query9.groovy 
b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query9.groovy
index 2b0eedaab9..761ff09d8c 100644
--- a/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query9.groovy
+++ b/regression-test/suites/nereids_tpcds_shape_sf100_p0/shape/query9.groovy
@@ -30,60 +30,60 @@ suite("query9") {
     sql 'set enable_nereids_timeout = false'
     sql 'SET enable_pipeline_engine = true'
 
-//     qt_ds_shape_9 '''
-//     explain shape plan
+    qt_ds_shape_9 '''
+    explain shape plan
 
 
 
 
-// select case when (select count(*) 
-//                   from store_sales 
-//                   where ss_quantity between 1 and 20) > 2972190
-//             then (select avg(ss_ext_sales_price) 
-//                   from store_sales 
-//                   where ss_quantity between 1 and 20) 
-//             else (select avg(ss_net_profit)
-//                   from store_sales
-//                   where ss_quantity between 1 and 20) end bucket1 ,
-//        case when (select count(*)
-//                   from store_sales
-//                   where ss_quantity between 21 and 40) > 4505785
-//             then (select avg(ss_ext_sales_price)
-//                   from store_sales
-//                   where ss_quantity between 21 and 40) 
-//             else (select avg(ss_net_profit)
-//                   from store_sales
-//                   where ss_quantity between 21 and 40) end bucket2,
-//        case when (select count(*)
-//                   from store_sales
-//                   where ss_quantity between 41 and 60) > 1575726
-//             then (select avg(ss_ext_sales_price)
-//                   from store_sales
-//                   where ss_quantity between 41 and 60)
-//             else (select avg(ss_net_profit)
-//                   from store_sales
-//                   where ss_quantity between 41 and 60) end bucket3,
-//        case when (select count(*)
-//                   from store_sales
-//                   where ss_quantity between 61 and 80) > 3188917
-//             then (select avg(ss_ext_sales_price)
-//                   from store_sales
-//                   where ss_quantity between 61 and 80)
-//             else (select avg(ss_net_profit)
-//                   from store_sales
-//                   where ss_quantity between 61 and 80) end bucket4,
-//        case when (select count(*)
-//                   from store_sales
-//                   where ss_quantity between 81 and 100) > 3525216
-//             then (select avg(ss_ext_sales_price)
-//                   from store_sales
-//                   where ss_quantity between 81 and 100)
-//             else (select avg(ss_net_profit)
-//                   from store_sales
-//                   where ss_quantity between 81 and 100) end bucket5
-// from reason
-// where r_reason_sk = 1
-// ;
+select case when (select count(*) 
+                  from store_sales 
+                  where ss_quantity between 1 and 20) > 2972190
+            then (select avg(ss_ext_sales_price) 
+                  from store_sales 
+                  where ss_quantity between 1 and 20) 
+            else (select avg(ss_net_profit)
+                  from store_sales
+                  where ss_quantity between 1 and 20) end bucket1 ,
+       case when (select count(*)
+                  from store_sales
+                  where ss_quantity between 21 and 40) > 4505785
+            then (select avg(ss_ext_sales_price)
+                  from store_sales
+                  where ss_quantity between 21 and 40) 
+            else (select avg(ss_net_profit)
+                  from store_sales
+                  where ss_quantity between 21 and 40) end bucket2,
+       case when (select count(*)
+                  from store_sales
+                  where ss_quantity between 41 and 60) > 1575726
+            then (select avg(ss_ext_sales_price)
+                  from store_sales
+                  where ss_quantity between 41 and 60)
+            else (select avg(ss_net_profit)
+                  from store_sales
+                  where ss_quantity between 41 and 60) end bucket3,
+       case when (select count(*)
+                  from store_sales
+                  where ss_quantity between 61 and 80) > 3188917
+            then (select avg(ss_ext_sales_price)
+                  from store_sales
+                  where ss_quantity between 61 and 80)
+            else (select avg(ss_net_profit)
+                  from store_sales
+                  where ss_quantity between 61 and 80) end bucket4,
+       case when (select count(*)
+                  from store_sales
+                  where ss_quantity between 81 and 100) > 3525216
+            then (select avg(ss_ext_sales_price)
+                  from store_sales
+                  where ss_quantity between 81 and 100)
+            else (select avg(ss_net_profit)
+                  from store_sales
+                  where ss_quantity between 81 and 100) end bucket5
+from reason
+where r_reason_sk = 1
+;
 
-//     '''
+    '''
 }


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@doris.apache.org
For additional commands, e-mail: commits-h...@doris.apache.org

Reply via email to