This is an automated email from the ASF dual-hosted git repository.

git-site-role pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/datasketches-website.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new d316ae0b Automatic Site Publish by Buildbot
d316ae0b is described below

commit d316ae0b0f78570b1279cdc1ea714b301d3d303e
Author: buildbot <[email protected]>
AuthorDate: Sun Dec 7 00:51:58 2025 +0000

    Automatic Site Publish by Buildbot
---
 output/docs/Architecture/KeyFeatures.html | 47 +++++++++++++++----------------
 1 file changed, 22 insertions(+), 25 deletions(-)

diff --git a/output/docs/Architecture/KeyFeatures.html 
b/output/docs/Architecture/KeyFeatures.html
index c10bcd58..5b729acb 100644
--- a/output/docs/Architecture/KeyFeatures.html
+++ b/output/docs/Architecture/KeyFeatures.html
@@ -345,30 +345,20 @@ configurable by trading off sketch size with 
accuracy.</li>
   <li>Designed for <a 
href="/docs/Architecture/LargeScale.html">Large-scale</a> computing 
environments 
 that must handle <b>Big Data</b>, e.g.:
     <ul>
-      <li><a href="https://hadoop.apache.org/";>Hadoop</a></li>
-      <li><a href="https://pig.apache.org";>Pig</a></li>
-      <li><a href="https://hive.apache.org";>Hive</a></li>
+      <li><a 
href="https://cloud.google.com/blog/products/data-analytics/bigquery-supports-apache-datasketches-for-approximate-analytics";>Google/BigQuery</a></li>
       <li><a href="https://druid.apache.org";>Druid</a></li>
-      <li><a href="https://spark.apache.org";>Spark</a></li>
+      <li><a href="https://github.com/apache/datasketches-spark";>Spark</a></li>
+      <li><a 
href="https://github.com/apache/datasketches-postgresql";>PostgreSQL</a></li>
+      <li><a 
href="https://github.com/apache/datasketches-hive";>Hadoop/Hive</a></li>
+      <li><a href="https://github.com/apache/datasketches-pig";>Pig</a></li>
     </ul>
   </li>
-  <li>
-    <table>
-      <tbody>
-        <tr>
-          <td><b>Maven deployable</b> and registered with the [Central 
Repository](https://search.maven.org/#search</td>
-          <td>ga</td>
-          <td>1</td>
-          <td>DataSketches).</td>
-        </tr>
-      </tbody>
-    </table>
-  </li>
+  <li>The Java-based sketches are registered with the <b>Maven Central 
Repository</b>. For example: <a 
href="https://search.maven.org/search?q=datasketches-java";>DataSketches-Java</a>.</li>
   <li>Extensive documentation with the systems developer in mind.</li>
   <li>Designed for production environments:
     <ul>
-      <li>Available in multiple languages: Java, C++, <a 
href="https://github.com/apache/datasketches-python";>Python</a></li>
-      <li>Binary compatible across systems and languages</li>
+      <li>Available in multiple languages: <a 
href="https://github.com/apache/datasketches-java";>Java</a>, <a 
href="https://github.com/apache/datasketches-cpp";>C++</a>, <a 
href="https://github.com/apache/datasketches-python";>Python</a>, and <a 
href="https://github.com/apache/datasketches-go";>Go</a>.</li>
+      <li>Binary compatible across systems and languages. For example, a 
sketch can be built and loaded in a C++ platform, then serialized and 
transported to a Java platform where it can be merged with other sketches and 
queried.</li>
     </ul>
   </li>
 </ul>
@@ -379,7 +369,7 @@ that must handle <b>Big Data</b>, e.g.:
   <li>General purpose <a href="/docs/Memory/MemoryComponent.html">Memory 
Component</a> for managing data off the Java Heap. 
 This enables systems designers the ability to manage their own large data 
heaps with 
 dedicated processor threads that would otherwise put undue pressure on the 
Java heap and 
-its garbage collection.</li>
+its garbage collection.  Starting with Java Version 9.0.0, this functionality 
is now native to the Java 25 language.</li>
   <li>General purpose implementaion of Austin Appleby’s 128-bit MurmurHash3 
algorithm, 
 with a number of useful extensions.</li>
 </ul>
@@ -399,8 +389,7 @@ with a number of useful extensions.</li>
 <a 
href="https://github.com/apache/datasketches-characterization";>Characterization</a>
 repository.</li>
     </ul>
   </li>
-  <li>Comprehensive Javadocs that satisfy 
-<a 
href="https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html";>JDK8
 Javadoc</a> standards.</li>
+  <li>Comprehensive Javadocs.</li>
 </ul>
 
 <h3 id="opportunities-to-extend">Opportunities to Extend</h3>
@@ -433,14 +422,15 @@ and Difference) on sets of unique identifiers</li>
 
 <h3 id="quantiles">Quantiles</h3>
 
-<ul>
-  <li><a href="/docs/Quantiles/QuantilesSketchOverview.html">Quantiles Sketch 
Overview</a>. Get normal or inverse PDFs or CDFs of the distributions of any 
numeric value from your raw data in a single pass with well defined error 
bounds on the results.</li>
-</ul>
+<h4 id="four-families-of-quantile-algorithms"><a 
href="/docs/QuantilesAll/QuantilesOverview.html">Four families of Quantile 
algorithms</a></h4>
+<p>Get normal or inverse PDFs or CDFs of the distributions of any numeric 
value from your raw data in a single pass with well defined error bounds on the 
results.</p>
 
-<h3 id="frequent-items">Frequent Items</h3>
+<h3 id="frequency">Frequency</h3>
 
 <ul>
   <li><a href="/docs/Frequency/FrequencySketchesOverview.html">Frequent Items 
Sketches</a> Get the most frequent items from a stream of items.</li>
+  <li><a 
href="https://github.com/apache/datasketches-java/blob/main/src/main/java/org/apache/datasketches/count/CountMinSketch.java";>CountMin
 sketch of Cormode and Muthukrishnan</a></li>
+  <li><a 
href="https://github.com/apache/datasketches-java/blob/main/src/main/java/org/apache/datasketches/fdt/FdtSketch.java";>Frequent
 Distinct Tuples</a></li>
 </ul>
 
 <h3 id="sampling">Sampling</h3>
@@ -448,6 +438,13 @@ and Difference) on sets of unique identifiers</li>
 <ul>
   <li><a href="/docs/Sampling/ReservoirSampling.html">Reservoir Sampling</a> 
Knuth’s well known Reservoir sampling “Algorithm R”, but extended to enable 
merging across different sized reservoirs.</li>
   <li><a href="/docs/Sampling/VarOptSampling.html">Weighted Sampling</a> Edith 
Cohen’s famous sampling algorithm that enables computing subset sums of 
weighted samples with optimum variance.</li>
+  <li><a 
href="https://github.com/apache/datasketches-java/blob/main/src/main/java/org/apache/datasketches/sampling/EbppsItemsSketch.java";>Exact
 and Bounded Sampling Proportional to Size</a></li>
+</ul>
+
+<h3 id="filters-and-set-membership">Filters and Set Membership</h3>
+
+<ul>
+  <li><a 
href="https://github.com/apache/datasketches-java/blob/main/src/main/java/org/apache/datasketches/filters/bloomfilter/BloomFilter.java";>Bloom
 Filter</a></li>
 </ul>
 
 


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to