This is an automated email from the ASF dual-hosted git repository.
git-site-role pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/datasketches-website.git
The following commit(s) were added to refs/heads/asf-site by this push:
new 64fb4638 Automatic Site Publish by Buildbot
64fb4638 is described below
commit 64fb46388449fbf73c74533b36e2e7b92ae8e0a8
Author: buildbot <[email protected]>
AuthorDate: Mon Apr 29 01:48:42 2024 +0000
Automatic Site Publish by Buildbot
---
output/docs/Community/Downloads.html | 2 +-
...ilesSketch.html => ClassicQuantilesSketch.html} | 2 +-
output/docs/Quantiles/QuantilesOverview.html | 64 ++-
.../SketchingQuantilesAndRanksTutorial.html | 527 +++++++++++++--------
4 files changed, 360 insertions(+), 235 deletions(-)
diff --git a/output/docs/Community/Downloads.html
b/output/docs/Community/Downloads.html
index c5489c72..b53e0566 100644
--- a/output/docs/Community/Downloads.html
+++ b/output/docs/Community/Downloads.html
@@ -632,7 +632,7 @@
<div class="language-xml highlighter-rouge"><div class="highlight"><pre
class="highlight"><code><span class="nt"><dependency></span>
<span class="nt"><groupId></span>org.apache.datasketches<span
class="nt"></groupId></span>
<span class="nt"><artifactId></span>datasketches-java<span
class="nt"></artifactId></span>
- <span class="nt"><version></span>3.1.0<span
class="nt"></version></span>
+ <span class="nt"><version></span>6.0.0<span
class="nt"></version></span>
<span class="nt"></dependency></span>
</code></pre></div></div>
diff --git a/output/docs/Quantiles/OrigQuantilesSketch.html
b/output/docs/Quantiles/ClassicQuantilesSketch.html
similarity index 99%
rename from output/docs/Quantiles/OrigQuantilesSketch.html
rename to output/docs/Quantiles/ClassicQuantilesSketch.html
index 93d28361..77ee5062 100644
--- a/output/docs/Quantiles/OrigQuantilesSketch.html
+++ b/output/docs/Quantiles/ClassicQuantilesSketch.html
@@ -522,7 +522,7 @@
specific language governing permissions and limitations
under the License.
-->
-<h1 id="original-quantiles-sketch">Original Quantiles Sketch</h1>
+<h1 id="classic-quantiles-sketch">Classic Quantiles Sketch</h1>
<h2 id="quantiles-sketches-accuracy-and-size">Quantiles Sketches Accuracy and
Size</h2>
<p>Please review the Quantiles <a
href="/docs/Quantiles/Definitions.html">Definitions</a>.</p>
diff --git a/output/docs/Quantiles/QuantilesOverview.html
b/output/docs/Quantiles/QuantilesOverview.html
index 25155f4d..9acebc45 100644
--- a/output/docs/Quantiles/QuantilesOverview.html
+++ b/output/docs/Quantiles/QuantilesOverview.html
@@ -522,47 +522,61 @@
specific language governing permissions and limitations
under the License.
-->
-<h1 id="introduction-to-the-3-quantiles-sketches">Introduction to the 3
Quantiles Sketches</h1>
+<h1 id="introduction-to-the-quantile-sketches">Introduction to the Quantile
Sketches</h1>
-<h2 id="quantile-type-sketches-in-the-library">Quantile-type sketches in the
library</h2>
+<p>This is a quick overview of the quantiles sketches in the library. Each of
these quantile types may have one or more specific implementaions and some
variation in API depending on the language. Three of the quantile sketches have
mathematically provable error bounds while the fourth is an empirical
algorithm.</p>
-<p>This is an overview of the three types of quantiles sketches in the
library. Each of these quantile types may have one or more specific
implementtaions.</p>
+<p>The three sketches with mathematically provable error bounds are:</p>
-<p>The mathematical error bounds of all the quantile sketches is specified
with respect to rank and not with respect to quantiles. In other words, the
difference between the rank upper bound and the rank lower bound is the
confidence interval and can be expressed as a percent of the overall rank
distribution (which is 1.0) and is the mathematically derived error for a
specific configuration of the sketch.</p>
+<ul>
+ <li>The Classic quantile sketch family</li>
+ <li>The KLL quantile sketch family</li>
+ <li>The REQ quantile sketch</li>
+</ul>
-<p>Although the quantile upper bound and quantile lower bounds can be
approximately computed from the rank upper bound and rank lower bound, and the
difference between the quantile bounds is also an approximate confidence
interval, the size of the quantile confidence interval may not be meaningful
and is not constrained by the defined error of the sketch.</p>
+<p>The one empirical quantile sketch is the T-Digest sketch.</p>
-<p>These sketches have many parallel methods. Please refer to the individual
Javadocs for more information.</p>
+<p>The mathematical error bounds of the Classic, KLL and REQ sketches are
specified with respect to rank and not with respect to quantiles.</p>
-<h3 id="the-req-sketch">The REQ Sketch</h3>
+<p>The T-Digest is empirical and has no mathematical basis for estimating its
error and its results are dependent on the input data. However, for many common
data distributions, it can produce excellent results. Please refer to the
spcific documentation about the T-Digest sketch.</p>
+
+<p>For the Classic and KLL sketches, the difference between the rank upper
bound and the rank lower bound is a 99% confidence interval and is an additive
constant for all normalized ranks between 0.0 and 1.0. The specific error is a
function of the parameter <i>K</i> of the sketch and can be derived from the
sketch. For example, if the rank error for a given K is 1%, then the error of
a result rank of .01 is +/- .01 with a 99% confidence; the error of a result
rank of .99 is +/- .01 wit [...]
+
+<p>The REQ sketch is special in that it’s error is also relative to the actual
result rank (thus its name: Relative Error Quantiles). It was designed to
proved very high rank accuacy for either the high end of the range of ranks
(close to 1.0) or, based on the user’s choice, the low end of ranks (close to
0.0). Please refer to the spcific documentation about the REQ sketch.</p>
+
+<p>Although upper and lower quantile bounds can be approximately computed from
the upper and lower rank bounds, and the difference between the quantile bounds
is also an approximate confidence interval, the size of the quantile confidence
interval may not be meaningful and is not constrained by the defined rank error
of the sketch.</p>
+
+<p>For example, a 1% rank error at a result rank of .50 corresponds to a rank
range of .49 to .51. However, in the quantile domain, there could be step
function in the values such that the difference in the quantiles corresponding
to ranks .49 and .51 are as large as the the entire dynamic range of all
quantiles. It is possible to retrieve the upper and lower quantile bounds at a
specific rank, but the difference between these quantile bounds may not be
meaningful.</p>
+
+<p>These sketches have many parallel methods. Please refer to the sketch API
documentation by language for more information.</p>
+
+<h3 id="the-classic-quantiles-sketch">The Classic Quantiles Sketch</h3>
<ul>
<li>Java
<ul>
- <li>Release 2.0.0, 12 Feb 2021</li>
+ <li>Release 0.3.0, 25 Jan 2016</li>
<li>Repo: <a
href="https://github.com/apache/datasketches-java">https://github.com/apache/datasketches-java</a></li>
- <li>Package: org.apache.datasketches.req</li>
+ <li>Package: org.apache.datasketches.quantiles</li>
</ul>
</li>
<li>C++, Python
<ul>
- <li>Release 2.2.0, Soon</li>
+ <li>Release 1.0.0, 17 Sep 2019</li>
<li>Repo: <a
href="https://github.com/apache/datasketches-cpp">https://github.com/apache/datasketches-cpp</a></li>
- <li>Directory: req</li>
</ul>
</li>
<li>Key Features (both Java & C++)
<ul>
- <li>Accuracy %: a function of <em>K</em> and <strong>relative</strong>
with respect to rank. The user can select either High Rank Accuracy (HRA) or
Low Rank Accuracy (LRA). This enables extremely high accuracy for the ends of
the rank domain. E.g., 99.999%ile quantiles.</li>
- <li>User selectable comparison QuantileSearchCriteria:
+ <li>User selectable search criteria QuantileSearchCriteria:
<ul>
<li>Exclusive, which is compatible with the KLL and older Quantiles
Sketch</li>
<li>Inclusive, a common definition in some of the theoretical
literature.</li>
</ul>
</li>
- <li>Java: Dedicated <em>float</em> implementation.</li>
- <li>C++: Template implementation for arbitrary comparible types.</li>
- <li>Python: Dedicated <em>float</em> and <em>integer</em>
implementations.</li>
+ <li>Accuracy %: a function of <em>K</em> and independent of rank.</li>
+ <li>Dedicated <em>double</em> implentation, which can be configured for
off-heap operation.</li>
+ <li>Generic implementation for arbitrary comparible types.</li>
</ul>
</li>
</ul>
@@ -601,35 +615,35 @@
</li>
</ul>
-<h3 id="the-quantiles-sketch">The Quantiles Sketch</h3>
+<h3 id="the-req-sketch">The REQ Sketch</h3>
<ul>
<li>Java
<ul>
- <li>Release 0.3.0, 25 Jan 2016</li>
+ <li>Release 2.0.0, 12 Feb 2021</li>
<li>Repo: <a
href="https://github.com/apache/datasketches-java">https://github.com/apache/datasketches-java</a></li>
- <li>Package: org.apache.datasketches.quantiles</li>
+ <li>Package: org.apache.datasketches.req</li>
</ul>
</li>
<li>C++, Python
<ul>
- <li>Release 1.0.0, 17 Sep 2019</li>
+ <li>Release 2.2.0, Soon</li>
<li>Repo: <a
href="https://github.com/apache/datasketches-cpp">https://github.com/apache/datasketches-cpp</a></li>
- <li>Directory:</li>
+ <li>Directory: req</li>
</ul>
</li>
<li>Key Features (both Java & C++)
<ul>
+ <li>Accuracy %: a function of <em>K</em> and <strong>relative</strong>
with respect to rank. The user can select either High Rank Accuracy (HRA) or
Low Rank Accuracy (LRA). This enables extremely high accuracy for the ends of
the rank domain. E.g., 99.999%ile quantiles.</li>
<li>User selectable comparison QuantileSearchCriteria:
<ul>
<li>Exclusive, which is compatible with the KLL and older Quantiles
Sketch</li>
<li>Inclusive, a common definition in some of the theoretical
literature.</li>
</ul>
</li>
- <li>Accuracy %: a function of <em>K</em> and independent of rank.</li>
- <li>Dedicated <em>double</em> implentation.</li>
- <li>java generic implementation for arbitrary comparible types.</li>
- <li>The dedicated <em>double</em> implementation can be configured for
off-heap operation.</li>
+ <li>Java: Dedicated <em>float</em> implementation.</li>
+ <li>C++: Template implementation for arbitrary comparible types.</li>
+ <li>Python: Dedicated <em>float</em> and <em>integer</em>
implementations.</li>
</ul>
</li>
</ul>
diff --git a/output/docs/Quantiles/SketchingQuantilesAndRanksTutorial.html
b/output/docs/Quantiles/SketchingQuantilesAndRanksTutorial.html
index bdedaf92..fb78ca7d 100644
--- a/output/docs/Quantiles/SketchingQuantilesAndRanksTutorial.html
+++ b/output/docs/Quantiles/SketchingQuantilesAndRanksTutorial.html
@@ -541,20 +541,23 @@ of quantiles, ranks and their functions.</p>
<li>
<p>The <strong>natural rank</strong> is a <strong>natural number</strong>
from the set of one-based, natural numbers, ℕ<sub>1</sub>, and is derived by
enumerating an ordered set of values, starting with the value 1, up to
<em>n</em>, the number of values in the original set.</p>
</li>
- <li>The <strong><em>normalized rank</em></strong> is a number between 0.0
and 1.0 computed by dividing the <em>natural rank</em> by the total number of
values in the set, <em>n</em>. Thus, for finite sets, any <em>normalized
rank</em> is in the range (0, 1]. Normalized ranks are often written as a
percent. But don’t confuse percent with percentile! This will be explained
below.</li>
+ <li>The <strong><em>normalized rank</em></strong> is a number between 0.0
and 1.0 computed by dividing the <em>natural rank</em> by the total number of
values in the set, <em>n</em>. Thus, for finite sets, any <em>normalized
rank</em> is in the range (0, 1]. Normalized ranks are often written as a
percent.
+For example, the value associated with the normalized rank of 0.5 is the
median of the distribution and is also the value at the 50th percentile of the
distribution.</li>
<li>A rank of 0, whether natural or normalized, represents the empty
set.</li>
</ul>
-<p>In our sketch library and documentation, when we refer to <em>rank</em>, we
imply <em>normalized rank</em>. However, in this tutorial, we will sometimes
use <em>natural ranks</em> to simplify the examples.</p>
+<p>In our sketch library APIs and documentation, when we refer to
<em>rank</em>, we imply <em>normalized rank</em>, because <em>normalized
ranks</em> can be specified independent of <em>n</em>. However, in this
tutorial, we will sometimes use <em>natural ranks</em> to simplify the
examples.</p>
<h3 id="rank-and-mass">Rank and Mass</h3>
-<p><em>Normalized rank</em> is closely associated with the concept of
<em>mass</em>. The value associated with the rank 0.5 represents the median
value, or the center of <em>mass</em> of the entire set, where half of the
values are below the median and half are above. The concept of mass is
important to understanding the Probability Mass Function (PMF) offered by all
the quantile sketches in the library.</p>
+<p><em>Normalized rank</em> is closely associated with the concept of
<em>mass</em>. The value associated with the <em>normalized rank</em> 0.5
represents the median value, or the center of <em>mass</em> of the entire set,
where half of the values are below the median and half are above. The concept
of mass is important to understanding the Probability Mass Function (PMF)
offered by most of the quantile sketches in the library.</p>
<h2 id="what-is-a-quantile">What is a quantile?</h2>
<h3 id="a-quantile-is-a-value-that-is-associated-with-a-particular-rank">A
<strong><em>quantile</em></strong> is a <strong><em>value</em></strong> that is
associated with a particular <strong><em>rank</em></strong>.</h3>
+<p>When an ordered set of values is associated with their ranks it becomes
enumerated and we refer to the set of values as <em>quantiles</em>. In this
context we can think of a quantile and its rank as a pair <em>{quantile,
rank}</em> and an ordered set of these pairs as a <em>cumulative
distribution</em>, or CD. When we add the capability to search to this CD, it
becomes a <em>cumulative distribution function</em>, or CDF. We can query this
CDF by rank to find its associated quantile, [...]
+
<p><em>Quantile</em> is the general term that includes other terms that are
also quantiles.
To wit:</p>
@@ -604,37 +607,39 @@ To wit:</p>
<p>Let’s define the simple functions</p>
-<h3
id="quantilerank-or-qr--return-the-quantile-q-associated-with-a-given-rank-r"><strong><em>quantile(rank)</em></strong>
or <strong><em>q(r)</em></strong> := return the quantile
<strong><em>q</em></strong> associated with a given <strong><em>rank,
r</em></strong>.</h3>
+<h3
id="quantilerank-or-qr--return-the-quantile-q-associated-with-a-given-rank-r"><strong><em>quantile(rank)</em></strong>
or <strong><em>Q(r)</em></strong> := return the quantile
<strong><em>q</em></strong> associated with a given <strong><em>rank,
r</em></strong>.</h3>
-<h3
id="rankquantile-or-rq--return-the-rank-r-associated-with-a-given-quantile-q"><strong><em>rank(quantile)</em></strong>
or <strong><em>r(q)</em></strong> := return the rank
<strong><em>r</em></strong> associated with a given <strong><em>quantile,
q</em></strong>.</h3>
+<h3
id="rankquantile-or-rq--return-the-rank-r-associated-with-a-given-quantile-q"><strong><em>rank(quantile)</em></strong>
or <strong><em>R(q)</em></strong> := return the rank
<strong><em>r</em></strong> associated with a given <strong><em>quantile,
q</em></strong>.</h3>
<p>Using an example from the table:</p>
<ul>
<li>Using natural ranks:
<ul>
- <li><em>q(3) = 30</em></li>
- <li><em>r(30) = 3</em></li>
+ <li><em>Q(3) = 30</em></li>
+ <li><em>R(30) = 3</em></li>
</ul>
</li>
<li>Using normalized ranks:
<ul>
- <li><em>q(.6) = 30</em></li>
- <li><em>r(30) = .6</em></li>
+ <li><em>Q(.6) = 30</em></li>
+ <li><em>R(30) = .6</em></li>
</ul>
</li>
</ul>
<p>Because of the close, two-way relationship of quantiles and ranks,<br />
-<em>r(q)</em> and <em>q(r)</em> form a <em>1:1 functional pair</em> if, and
only if</p>
+<em>R(q)</em> and <em>Q(r)</em> form a <em>1:1 functional pair</em> if, and
only if</p>
<ul>
- <li><em>q = q(r(q))</em></li>
- <li><em>r = r(q(r))</em></li>
+ <li><em>q = Q(R(q))</em></li>
+ <li><em>r = R(Q(r))</em></li>
</ul>
<p>And this is certainly true of the table above.</p>
+<h2
id="note-the-following-part-of-this-tutorial-only-applies-to-the-classic-kll-and-req-quantile-sketches-the-t-digest-is-an-entirely-different-type-of-sketch">NOTE
The following part of this tutorial only applies to the Classic, KLL, and REQ
quantile sketches. The T-Digest is an entirely different type of sketch.</h2>
+
<h2 id="the-challenge-of-duplicates">The challenge of duplicates</h2>
<p>With real data we often encounter duplicate quantiles in the stream. Let’s
examine this next table.</p>
@@ -661,7 +666,7 @@ To wit:</p>
</tbody>
</table>
-<p>As you can see <em>q(r)</em> is straightforward. But how about
<em>r(q)</em>? Which of the ranks 2, 3, or 4 should the function return, given
the quantile 20? Given this data, and our definitions so far, the function
<em>r(q)</em> is ambiguous. We will see how to resolve this shortly.</p>
+<p>As you can see <em>Q(r)</em> is straightforward. But how about
<em>R(q)</em>? Which of the ranks 2, 3, or 4 should the function return, given
the quantile 20? Given this data, and our definitions so far, the function
<em>R(q)</em> is ambiguous. We will see how to resolve this shortly.</p>
<h2 id="the-challenge-of-approximation">The challenge of approximation</h2>
<p>By definition, sketching algorithms are approximate, and they achieve their
high performance by discarding data. Suppose you feed <em>n</em> quantiles
into a sketch that retains only <em>m < n</em> quantiles. This means
<em>n-m</em> quantiles were discarded. The sketch must track the quantity
<em>n</em> used for computing the rank and quantile functions. When the sketch
reconstructs the relationship between ranks and quantiles, <em>n-m</em>
quantiles are missing creating holes in [...]
@@ -726,39 +731,63 @@ To wit:</p>
</tbody>
</table>
-<p>When the sketch deletes quantiles it adjusts the associated ranks by
effectively increasing the “weight” of adjacent quantiles so that they are
approximately positionally correct and the top natural rank corresponds to
<em>n</em>.</p>
+<p>When the sketch deletes quantiles it adjusts the associated ranks by
effectively increasing the “weight” of retained quantiles so that they are
approximately positionally correct and the top natural rank corresponds to
<em>n</em>.</p>
-<p>How do we resolve <em>q(3)</em> or <em>r(20)</em>?</p>
+<h3
id="note-with-the-datasketches-java-library-600-and-after-the-min-and-max-quantiles-of-the-stream-are-reinserted-in-to-the-sorted-view-representation-of-the-stream-if-the-sketch-has-deleted-them--therefore-the-second-table-above-would-look-something-like-this">NOTE:
With the DataSketches Java library 6.0.0 and after, the min and max quantiles
of the stream are reinserted in to the Sorted View representation of the stream
if the sketch has deleted them. Therefore, the second table ab [...]
+
+<table>
+ <thead>
+ <tr>
+ <th>Quantile:</th>
+ <th>10</th>
+ <th>30</th>
+ <th>50</th>
+ <th>70</th>
+ <th>90</th>
+ <th>100</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>Natural Rank</td>
+ <td>2</td>
+ <td>4</td>
+ <td>6</td>
+ <td>8</td>
+ <td>9</td>
+ <td>10</td>
+ </tr>
+ </tbody>
+</table>
+
+<p>How do we resolve <em>Q(3)</em> or <em>R(20)</em>?</p>
<h2 id="the-need-for-inequality-search">The need for inequality search</h2>
-<p>The quantile sketch algorithms discussed in the literature primarily differ
by how they choose which quantiles in the stream should be discarded. After the
elimination process, all of the quantiles sketch implementations are left with
the challenge of how to reconstruct the actual distribution, approximately and
with good accuracy.</p>
+<p>The quantile sketch algorithms discussed in the literature primarily differ
by how they choose which quantiles in the stream should be discarded. After the
elimination process, all of the quantiles sketch implementations are left with
the challenge of how to reconstruct the actual distribution of the stream,
approximately and with good accuracy.</p>
-<p>Given the presence of duplicates and absence of values from the stream we
must redefine the above quantile and rank functions as inequalities
<strong>while retaining the properties of 1:1 functions.</strong></p>
+<p>Given the presence of duplicates and absence of values from the stream we
must redefine the above quantile and rank functions as inequalities while
retaining the properties of 1:1 functions as closely as possible.**</p>
<p>One can find examples of the following definitions in the research
literature. All of our library quantile sketches allow the user to choose the
searching criteria.</p>
-<p>These next examples use a small data set that mimics what could be the
result of both duplication and sketch data deletion.</p>
+<p>These next examples use a small data set that mimics what could be the
result of both input duplication and sketch data deletion.</p>
-<h2 id="the-rules-for-returned-quantiles-or-ranks">The rules for returned
quantiles or ranks</h2>
+<h2
id="the-rules-for-returned-quantiles-or-ranks-for-classic-kll-and-req-sketches">The
rules for returned quantiles or ranks for Classic, KLL, and REQ sketches</h2>
<ul>
<li>
- <p><strong>Rule 1:</strong> Every quantile that exists in the input stream
or retained by the sketch has an associated rank.</p>
+ <p><strong>Rule 1:</strong> Every quantile that exists in the input stream
or retained by the sketch has an associated rank when sorted.</p>
</li>
<li>
- <p><strong>Rule 2:</strong> All of our quantile sketches only retain
quantiles that exist in the actual input stream of quantiles.</p>
+ <p><strong>Rule 2:</strong> These quantile sketches retain and return only
quantiles that exist in the actual input stream of quantiles. In other words,
these quantile sketches do not retain or return interpolations beteen quantiles
from the input stream. (The T-Digest sketch does do interpolations.)</p>
</li>
<li>
- <p><strong>Rule 3:</strong> For the <em>getQuantile(rank)</em> queries,
all of our quantile sketches only return quantiles that were retained by the
sketch. (i.e, we do not interpolate between quantiles.)</p>
+ <p><strong>Rule 3:</strong> For the <em>getRank(quantile)</em> queries,
all of our quantile sketches only return ranks that are associated with
quantiles retained by the sketch. In other words, these sketches do not
interpolate between ranks.</p>
</li>
<li>
- <p><strong>Rule 4:</strong> For the <em>getRank(quantile)</em> queries,
all of our quantile sketches only return ranks that are associated with
quantiles retained by the sketch. (i.e, we do not interpolate between
ranks.)</p>
- </li>
- <li>
- <p><strong>Rule 5:</strong> All of our quantile algorithms compensate for
quantiles removed during the sketch quantile selection and compression process
by increasing the weights of some of the quantiles not selected for removal,
such that:</p>
+ <p><strong>Rule 4:</strong> The quantile algorithms of these sketches
compensate for quantiles removed during the sketch compacton process by
increasing the weights of the quantiles not selected for removal, such that:</p>
<ul>
- <li>The sum of the natural weights of all quantiles retained by the
sketch equals <strong>n</strong>, the total count of all quantiles given to the
sketch.</li>
+ <li>The sum of the individual item weights of all quantiles retained by
the sketch equals <strong>n</strong>, the total count of all quantiles given to
the sketch.</li>
<li>And by corollary, the largest quantile, when sorted by cumulative
rank, has a cumulative natural rank of <strong>n</strong>, or equivalently, a
cumulative normalized rank of <strong>1.0</strong>.</li>
</ul>
</li>
@@ -766,26 +795,26 @@ To wit:</p>
<h2 id="the-rank-functions-with-inequalities">The rank functions with
inequalities</h2>
-<h3
id="rankquantile-inclusive-or-rq-le-given-q-return-the-rank-r-of-the-largest-quantile-that-is-less-than-or-equal-to-q"><strong><em>rank(quantile,
INCLUSIVE)</em></strong> or <strong><em>r(q, LE)</em></strong> :=<br />Given
<em>q</em>, return the rank, <em>r</em>, of the largest quantile that is less
than or equal to <em>q</em>.</h3>
+<h3
id="rankquantile-inclusive-or-rq-le-given-q-return-the-rank-r-of-the-largest-quantile-that-is-less-than-or-equal-to-q"><strong><em>rank(quantile,
INCLUSIVE)</em></strong> or <strong><em>R(q, LE)</em></strong> :=<br />Given
<em>q</em>, return the rank, <em>r</em>, of the largest quantile that is Less
Than or Equal To <em>q</em>.</h3>
-<p><b>Implementation:</b></p>
+<p><em>Implementation: Normal Rule</em></p>
<ul>
<li>Given <em>q</em>, search the quantile array until we find the adjacent
pair <em>{q1, q2}</em> where <em>q1 <= q < q2</em>.</li>
<li>Return the rank, <em>r</em>, associated with <em>q1</em>, the first of
the pair.</li>
</ul>
-<p><b>Boundary Exceptions:</b></p>
+<p><em>Boundary Exceptions:</em></p>
<ul>
- <li><strong>Boundary Rule 1:</strong> If the given <em>q</em> is
<em>>=</em> the quantile associated with the largest cumulative rank
retained by the sketch, the function will return the largest cumulative rank,
<em>1.0</em>.</li>
- <li><strong>Boundary Rule 2:</strong> If the given <em>q</em> is
<em><</em> the quantile associated with the smallest cumulative rank
retained by the sketch, the function will return a rank of <em>0.0</em>.</li>
+ <li><strong>Boundary Rule RI-1:</strong> If the given <em>q</em> is
<em>>=</em> the quantile associated with the largest cumulative rank
retained by the sketch, the function will return the largest cumulative rank,
<em>1.0</em>.</li>
+ <li><strong>Boundary Rule RI-2:</strong> If the given <em>q</em> is
<em><</em> the quantile associated with the smallest cumulative rank
retained by the sketch, the function will return a rank of <em>0.0</em>. There
is no quantile that is <= <em>q</em>. Returning <em>0.0</em> is essentially
the same as <em>Empty</em> or <em>null</em>.</li>
</ul>
-<p><b>Examples using normalized ranks:</b></p>
+<p><em>Examples using normalized ranks. The given value is
underlined.</em></p>
<ul>
- <li><em>r(30) = .786</em> Normal rule applies: <em>30 <= 30 < 40</em>,
return <em>r(q1) = .786</em>.</li>
+ <li><em>r(_10_) = .071</em> Normal rule applies: <em>10 <= _10_ <
20</em>, return <em>r(q1) = .071</em>.</li>
</ul>
<table>
@@ -827,24 +856,24 @@ To wit:</p>
</tr>
<tr>
<td>Quantile input</td>
+ <td><em>10</em></td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
- <td>30</td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Qualifying pair</td>
+ <td>q1</td>
+ <td>q2</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
- <td>q1</td>
- <td>q2</td>
<td> </td>
</tr>
<tr>
@@ -854,7 +883,7 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>.786</td>
+ <td> </td>
<td> </td>
<td> </td>
</tr>
@@ -862,7 +891,7 @@ To wit:</p>
</table>
<ul>
- <li><em>r(55) = 1.0</em> Use Boundary Rule 1: <em>50 <= 55</em>, return
<em>1.0</em>.</li>
+ <li><em>r(_30_) = .786</em> Normal rule applies: <em>30 <= _30_ <
40</em>, return <em>r(q1) = .786</em>.</li>
</ul>
<table>
@@ -877,7 +906,6 @@ To wit:</p>
<th>30</th>
<th>40</th>
<th>50</th>
- <th>?</th>
</tr>
</thead>
<tbody>
@@ -891,7 +919,6 @@ To wit:</p>
<td>11</td>
<td>13</td>
<td>14</td>
- <td> </td>
</tr>
<tr>
<td>Normalized Rank[]:</td>
@@ -903,7 +930,6 @@ To wit:</p>
<td>.786</td>
<td>.929</td>
<td>1.0</td>
- <td> </td>
</tr>
<tr>
<td>Quantile input</td>
@@ -912,10 +938,9 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
+ <td><em>30</em></td>
<td> </td>
<td> </td>
- <td>55</td>
- <td> </td>
</tr>
<tr>
<td>Qualifying pair</td>
@@ -924,10 +949,9 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td> </td>
- <td> </td>
<td>q1</td>
- <td>(q2)</td>
+ <td>q2</td>
+ <td> </td>
</tr>
<tr>
<td>Rank result</td>
@@ -936,23 +960,21 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
+ <td>.786</td>
<td> </td>
<td> </td>
- <td>1.0</td>
- <td> </td>
</tr>
</tbody>
</table>
<ul>
- <li><em>r(5) = 0.0</em> Use Boundary Rule 2: <em>5 < 10</em>, return
<em>0.0</em>.</li>
+ <li><em>r(_50_) = 1.0</em> Use Boundary Rule RI-1: <em>50 <= _50_</em>,
return <em>1.0</em>.</li>
</ul>
<table>
<thead>
<tr>
<th>Quantile[]:</th>
- <th>?</th>
<th>10</th>
<th>20</th>
<th>20</th>
@@ -961,12 +983,12 @@ To wit:</p>
<th>30</th>
<th>40</th>
<th>50</th>
+ <th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Rank[]:</td>
- <td> </td>
<td>1</td>
<td>3</td>
<td>5</td>
@@ -975,10 +997,10 @@ To wit:</p>
<td>11</td>
<td>13</td>
<td>14</td>
+ <td> </td>
</tr>
<tr>
<td>Normalized Rank[]:</td>
- <td> </td>
<td>.071</td>
<td>.214</td>
<td>.357</td>
@@ -987,10 +1009,10 @@ To wit:</p>
<td>.786</td>
<td>.929</td>
<td>1.0</td>
+ <td> </td>
</tr>
<tr>
<td>Quantile input</td>
- <td>5</td>
<td> </td>
<td> </td>
<td> </td>
@@ -998,12 +1020,11 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
+ <td><em>50</em></td>
<td> </td>
</tr>
<tr>
<td>Qualifying pair</td>
- <td>(q1)</td>
- <td>q2</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1011,10 +1032,11 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
+ <td>q1</td>
+ <td>(q2)</td>
</tr>
<tr>
<td>Rank result</td>
- <td>0</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1022,33 +1044,14 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
+ <td>1.0</td>
<td> </td>
</tr>
</tbody>
</table>
-<hr />
-
-<h3
id="rankquantile-exclusive-or-rq-lt-given-q-return-the-rank-r-of-the-largest-quantile-that-is-strictly-less-than-q"><strong><em>rank(quantile,
EXCLUSIVE)</em></strong> or <strong><em>r(q, LT)</em></strong> :=<br />Given
<em>q</em>, return the rank, <em>r</em>, of the largest quantile that is
strictly <em>Less Than</em> <em>q</em>.</h3>
-
-<p><b>Implementation:</b></p>
-
-<ul>
- <li>Given <em>q</em>, search the quantile array until we find the adjacent
pair <em>{q1, q2}</em> where <em>q1 < q <= q2</em>.</li>
- <li>Return the rank, <em>r</em>, associated with <em>q1</em>, the first of
the pair.</li>
-</ul>
-
-<p><b>Boundary Exceptions:</b></p>
-
<ul>
- <li><strong>Boundary Rule 1:</strong> If the given <em>q</em> is
<em>></em> the quantile associated with the largest cumulative rank retained
by the sketch, the sketch will return the the largest cumulative rank,
<em>1.0</em>.</li>
- <li><strong>Boundary Rule 2:</strong> If the given <em>q</em> is
<em><=</em> the quantile associated with the smallest cumulative rank
retained by the sketch, the sketch will return a rank of <em>0.0</em>.</li>
-</ul>
-
-<p><b>Examples using normalized ranks:</b></p>
-
-<ul>
- <li><em>r(30) = .357</em> Normal rule applies: <em>20 < 30 <= 30</em>,
return <em>r(q1) = .357</em>.</li>
+ <li><em>r(_55_) = 1.0</em> Use Boundary Rule RI-1: <em>50 <= _55_</em>,
return <em>1.0</em>.</li>
</ul>
<table>
@@ -1063,6 +1066,7 @@ To wit:</p>
<th>30</th>
<th>40</th>
<th>50</th>
+ <th>?</th>
</tr>
</thead>
<tbody>
@@ -1076,6 +1080,7 @@ To wit:</p>
<td>11</td>
<td>13</td>
<td>14</td>
+ <td> </td>
</tr>
<tr>
<td>Normalized Rank[]:</td>
@@ -1086,52 +1091,57 @@ To wit:</p>
<td>.643</td>
<td>.786</td>
<td>.929</td>
- <td>1.000</td>
+ <td>1.0</td>
+ <td> </td>
</tr>
<tr>
<td>Quantile input</td>
<td> </td>
<td> </td>
<td> </td>
- <td>30</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
+ <td><em>55</em></td>
+ <td> </td>
</tr>
<tr>
<td>Qualifying pair</td>
<td> </td>
<td> </td>
- <td>q1</td>
- <td>q2</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
+ <td> </td>
+ <td>q1</td>
+ <td>(q2)</td>
</tr>
<tr>
<td>Rank result</td>
<td> </td>
<td> </td>
- <td>.357</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
+ <td>1.0</td>
+ <td> </td>
</tr>
</tbody>
</table>
<ul>
- <li><em>r(55) = 1.0</em> Use Boundary Rule 1: <em>50 < 55</em>, return
<em>1.0</em>.</li>
+ <li><em>r(_5_) = 0.0</em> Use Boundary Rule RI-2: <em>_5_ < 10</em>,
return <em>0.0</em>.</li>
</ul>
<table>
<thead>
<tr>
<th>Quantile[]:</th>
+ <th>?</th>
<th>10</th>
<th>20</th>
<th>20</th>
@@ -1140,12 +1150,12 @@ To wit:</p>
<th>30</th>
<th>40</th>
<th>50</th>
- <th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Rank[]:</td>
+ <td> </td>
<td>1</td>
<td>3</td>
<td>5</td>
@@ -1154,10 +1164,10 @@ To wit:</p>
<td>11</td>
<td>13</td>
<td>14</td>
- <td> </td>
</tr>
<tr>
<td>Normalized Rank[]:</td>
+ <td> </td>
<td>.071</td>
<td>.214</td>
<td>.357</td>
@@ -1166,10 +1176,10 @@ To wit:</p>
<td>.786</td>
<td>.929</td>
<td>1.0</td>
- <td> </td>
</tr>
<tr>
<td>Quantile input</td>
+ <td><em>5</em></td>
<td> </td>
<td> </td>
<td> </td>
@@ -1178,10 +1188,11 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>55</td>
</tr>
<tr>
<td>Qualifying pair</td>
+ <td>(q1)</td>
+ <td>q2</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1189,11 +1200,10 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>q1</td>
- <td>(q2)</td>
</tr>
<tr>
<td>Rank result</td>
+ <td>0</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1201,21 +1211,39 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>1.000</td>
<td> </td>
</tr>
</tbody>
</table>
+<hr />
+
+<h3
id="rankquantile-exclusive-or-rq-lt-given-q-return-the-rank-r-of-the-largest-quantile-that-is-strictly-less-than-q"><strong><em>rank(quantile,
EXCLUSIVE)</em></strong> or <strong><em>R(q, LT)</em></strong> :=<br />Given
<em>q</em>, return the rank, <em>r</em>, of the largest quantile that is
strictly Less Than <em>q</em>.</h3>
+
+<p><em>Implementation: Normal Rule</em></p>
+
+<ul>
+ <li>Given <em>q</em>, search the quantile array until we find the adjacent
pair <em>{q1, q2}</em> where <em>q1 < q <= q2</em>.</li>
+ <li>Return the rank, <em>r</em>, associated with <em>q1</em>, the first of
the pair.</li>
+</ul>
+
+<p><em>Boundary Exceptions:</em></p>
+
+<ul>
+ <li><strong>Boundary Rule RE-1:</strong> If the given <em>q</em> is
<em>></em> the quantile associated with the largest cumulative rank retained
by the sketch, the sketch will return the the largest cumulative rank,
<em>1.0</em>.</li>
+ <li><strong>Boundary Rule RE-2:</strong> If the given <em>q</em> is
<em><=</em> the quantile associated with the smallest cumulative rank
retained by the sketch, the sketch will return a rank of <em>0.0</em>.</li>
+</ul>
+
+<p><em>Examples using normalized ranks. The given value is
underlined.</em></p>
+
<ul>
- <li><em>r(5) = 0.0</em> Use Boundary Rule 2: <em>5 <= 10</em>, return
<em>0</em>.</li>
+ <li><em>r(_30_) = .357</em> Normal rule applies: <em>20 < _30_ <=
30</em>, return <em>r(q1) = .357</em>.</li>
</ul>
<table>
<thead>
<tr>
<th>Quantile[]:</th>
- <th>?</th>
<th>10</th>
<th>20</th>
<th>20</th>
@@ -1229,7 +1257,6 @@ To wit:</p>
<tbody>
<tr>
<td>Natural Rank[]:</td>
- <td> </td>
<td>1</td>
<td>3</td>
<td>5</td>
@@ -1241,7 +1268,6 @@ To wit:</p>
</tr>
<tr>
<td>Normalized Rank[]:</td>
- <td> </td>
<td>.071</td>
<td>.214</td>
<td>.357</td>
@@ -1249,14 +1275,13 @@ To wit:</p>
<td>.643</td>
<td>.786</td>
<td>.929</td>
- <td>1.0</td>
+ <td>1.000</td>
</tr>
<tr>
<td>Quantile input</td>
- <td>5</td>
- <td> </td>
<td> </td>
<td> </td>
+ <td><em>30</em></td>
<td> </td>
<td> </td>
<td> </td>
@@ -1265,11 +1290,10 @@ To wit:</p>
</tr>
<tr>
<td>Qualifying pair</td>
- <td>(q1)</td>
- <td>q2</td>
- <td> </td>
<td> </td>
<td> </td>
+ <td>q1</td>
+ <td>q2</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1277,10 +1301,9 @@ To wit:</p>
</tr>
<tr>
<td>Rank result</td>
- <td>0</td>
- <td> </td>
<td> </td>
<td> </td>
+ <td>.357</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1290,27 +1313,8 @@ To wit:</p>
</tbody>
</table>
-<h2 id="the-quantile-functions-with-inequalities">The quantile functions with
inequalities</h2>
-
-<h3
id="quantilerank-inclusive-or-qr-ge-given-r-return-the-quantile-q-of-the-smallest-rank-that-is-strictly-greater-than-or-equal-to-r"><strong><em>quantile(rank,
INCLUSIVE)</em></strong> or <strong><em>q(r, GE)</em></strong> :=<br />Given
<em>r</em>, return the quantile, <em>q</em>, of the smallest rank that is
strictly Greater than or Equal to <em>r</em>.</h3>
-
-<p><b>Implementation:</b></p>
-
-<ul>
- <li>Given <em>r</em>, search the rank array until we find the adjacent pair
<em>{r1, r2}</em> where <em>r1 < r <= r2</em>.</li>
- <li>Return the quantile, <em>q</em>, associated with <em>r2</em>, the second
of the pair.</li>
-</ul>
-
-<p><b>Boundary Exceptions:</b></p>
-
-<ul>
- <li><strong>Boundary Rule 2:</strong> If the given normalized rank,
<em>r</em>, is <em><=</em> the smallest rank, the function will return the
<strong>quantile</strong> associated with the smallest cumulative rank.</li>
-</ul>
-
-<p><b>Examples using normalized ranks:</b></p>
-
<ul>
- <li><em>q(.786) = 30</em> Normal rule applies: <em>.643 < .786 <=
.786</em>, return <em>q(r2) = 30</em>.</li>
+ <li><em>r(_50_) = .929</em> Normal rule applies: <em>40 < _50_ <=
50</em>, return <em>r(q1) = .929</em>.</li>
</ul>
<table>
@@ -1348,17 +1352,17 @@ To wit:</p>
<td>.643</td>
<td>.786</td>
<td>.929</td>
- <td>1.000</td>
+ <td>1.0</td>
</tr>
<tr>
- <td>Rank input</td>
+ <td>Quantile input</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
- <td>.786</td>
<td> </td>
+ <td><em>55</em></td>
<td> </td>
</tr>
<tr>
@@ -1367,27 +1371,27 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>r1</td>
- <td>r2</td>
<td> </td>
<td> </td>
+ <td>q1</td>
+ <td>q2</td>
</tr>
<tr>
- <td>Quantile result</td>
+ <td>Rank result</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
- <td>30</td>
<td> </td>
+ <td>.929</td>
<td> </td>
</tr>
</tbody>
</table>
<ul>
- <li><em>q(1.0) = 50</em> Normal rule applies: <em>.929 < 1.0 <=
1.0</em>, return <em>q(r2) = 50</em>.</li>
+ <li><em>r(_55_) = 1.0</em> Use Boundary Rule RE-1: <em>50 < _55_</em>,
return <em>1.0</em>.</li>
</ul>
<table>
@@ -1402,6 +1406,7 @@ To wit:</p>
<th>30</th>
<th>40</th>
<th>50</th>
+ <th>?</th>
</tr>
</thead>
<tbody>
@@ -1415,6 +1420,7 @@ To wit:</p>
<td>11</td>
<td>13</td>
<td>14</td>
+ <td> </td>
</tr>
<tr>
<td>Normalized Rank[]:</td>
@@ -1426,9 +1432,10 @@ To wit:</p>
<td>.786</td>
<td>.929</td>
<td>1.0</td>
+ <td> </td>
</tr>
<tr>
- <td>Rank input</td>
+ <td>Quantile input</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1436,7 +1443,8 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>1.0</td>
+ <td><em>55</em></td>
+ <td> </td>
</tr>
<tr>
<td>Qualifying pair</td>
@@ -1446,11 +1454,12 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>r1</td>
- <td>r2</td>
+ <td> </td>
+ <td>q1</td>
+ <td>(q2)</td>
</tr>
<tr>
- <td>Quantile result</td>
+ <td>Rank result</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1458,13 +1467,14 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>50</td>
+ <td>1.000</td>
+ <td> </td>
</tr>
</tbody>
</table>
<ul>
- <li><em>q(0.0 <= .071) = 10</em> Use Boundary Rule 2: <em>0.0 <=
.071</em>, return <em>10</em>.</li>
+ <li><em>r(_10_) = 0.0</em> Use Boundary Rule RE-2: <em>_10_ <= 10</em>,
return <em>0</em>.</li>
</ul>
<table>
@@ -1508,8 +1518,8 @@ To wit:</p>
<td>1.0</td>
</tr>
<tr>
- <td>Rank input</td>
- <td>0.0</td>
+ <td>Quantile input</td>
+ <td><em>0.0</em></td>
<td> </td>
<td> </td>
<td> </td>
@@ -1521,8 +1531,8 @@ To wit:</p>
</tr>
<tr>
<td>Qualifying pair</td>
- <td>(r1)</td>
- <td>r2</td>
+ <td>(q1)</td>
+ <td>q2</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1533,8 +1543,8 @@ To wit:</p>
</tr>
<tr>
<td>Rank result</td>
+ <td>0</td>
<td> </td>
- <td>10</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1546,34 +1556,15 @@ To wit:</p>
</tbody>
</table>
-<hr />
-
-<h3
id="quantilerank-exclusive-or-qr-gt-given-r-return-the-quantile-q-of-the-smallest-rank-that-is-strictly-greater-than-r"><strong><em>quantile(rank,
EXCLUSIVE)</em></strong> or <strong><em>q(r, GT)</em></strong> :=<br />Given
<em>r</em>, return the quantile, <em>q</em>, of the smallest rank that is
strictly Greater Than <em>r</em>.</h3>
-
-<p><b>Implementation:</b></p>
-
<ul>
- <li>Given <em>r</em>, search the rank array until we find the adjacent pair
<em>{r1, r2}</em> where <em>r1 <= r < r2</em>.</li>
- <li>Return the quantile, <em>q</em>, associated with <em>r2</em>, the second
of the pair.</li>
-</ul>
-
-<p><b>Boundary Exceptions:</b></p>
-
-<ul>
- <li><strong>Boundary Rule 1:</strong> If the given normalized rank,
<em>r</em>, is equal to 1.0, there is no quantile that satisfies this
criterion. However, for convenience, the function will return quantile
associated with the largest cumulative rank retained by the sketch.</li>
- <li><strong>Boundary Rule 2:</strong> If the given normalized rank,
<em>r</em>, is less than the smallest rank, the function will return the
quantile associated with the smallest cumulative rank retained by the
sketch.</li>
-</ul>
-
-<p><b>Examples using normalized ranks:</b></p>
-
-<ul>
- <li><em>q(.357) = 30</em> Normal rule applies: <em>.357 <= .357 <
.500</em>, return <em>q(r2) = 30</em>.</li>
+ <li><em>r(_5_) = 0.0</em> Use Boundary Rule RE-2: <em>_5_ <= 10</em>,
return <em>0</em>.</li>
</ul>
<table>
<thead>
<tr>
<th>Quantile[]:</th>
+ <th>?</th>
<th>10</th>
<th>20</th>
<th>20</th>
@@ -1587,6 +1578,7 @@ To wit:</p>
<tbody>
<tr>
<td>Natural Rank[]:</td>
+ <td> </td>
<td>1</td>
<td>3</td>
<td>5</td>
@@ -1598,6 +1590,7 @@ To wit:</p>
</tr>
<tr>
<td>Normalized Rank[]:</td>
+ <td> </td>
<td>.071</td>
<td>.214</td>
<td>.357</td>
@@ -1605,13 +1598,14 @@ To wit:</p>
<td>.643</td>
<td>.786</td>
<td>.929</td>
- <td>1.000</td>
+ <td>1.0</td>
</tr>
<tr>
- <td>Rank input</td>
+ <td>Quantile input</td>
+ <td><em>5</em></td>
+ <td> </td>
<td> </td>
<td> </td>
- <td>.357</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1620,21 +1614,23 @@ To wit:</p>
</tr>
<tr>
<td>Qualifying pair</td>
+ <td>(q1)</td>
+ <td>q2</td>
+ <td> </td>
<td> </td>
<td> </td>
- <td>r1</td>
- <td>r2</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
- <td>Quantile result</td>
+ <td>Rank result</td>
+ <td>0</td>
+ <td> </td>
<td> </td>
<td> </td>
<td> </td>
- <td>30</td>
<td> </td>
<td> </td>
<td> </td>
@@ -1643,8 +1639,27 @@ To wit:</p>
</tbody>
</table>
+<h2 id="the-quantile-functions-with-inequalities">The quantile functions with
inequalities</h2>
+
+<h3
id="quantilerank-inclusive-or-qr-ge-given-r-return-the-quantile-q-of-the-smallest-rank-that-is-strictly-greater-than-or-equal-to-r"><strong><em>quantile(rank,
INCLUSIVE)</em></strong> or <strong><em>Q(r, GE)</em></strong> :=<br />Given
<em>r</em>, return the quantile, <em>q</em>, of the smallest rank that is
strictly Greater Than or Equal To <em>r</em>.</h3>
+
+<p><em>Implementation: Normal Rule</em></p>
+
<ul>
- <li><em>q(1.0) = 50</em> Use Boundary Rule 1 <em>1.0 <= 1.0 < ?</em>,
return <em>50</em>.</li>
+ <li>Given <em>r</em>, search the rank array until we find the adjacent pair
<em>{r1, r2}</em> where <em>r1 < r <= r2</em>.</li>
+ <li>Return the quantile, <em>q</em>, associated with <em>r2</em>, the second
of the pair.</li>
+</ul>
+
+<p><em>Boundary Exceptions:</em></p>
+
+<ul>
+ <li><strong>Boundary Rule QI-1:</strong> If the given normalized rank,
<em>r</em>, is <em><=</em> the smallest rank, the function will return the
<strong>quantile</strong> associated with the smallest cumulative rank.</li>
+</ul>
+
+<p><em>Examples using normalized ranks. The given value is
underlined.</em></p>
+
+<ul>
+ <li><em>q(_.786_) = 30</em> Normal rule applies: <em>.643 < _.786_ <=
.786</em>, return <em>q(r2) = 30</em>.</li>
</ul>
<table>
@@ -1659,7 +1674,6 @@ To wit:</p>
<th>30</th>
<th>40</th>
<th>50</th>
- <th>?</th>
</tr>
</thead>
<tbody>
@@ -1673,7 +1687,6 @@ To wit:</p>
<td>11</td>
<td>13</td>
<td>14</td>
- <td> </td>
</tr>
<tr>
<td>Normalized Rank[]:</td>
@@ -1684,8 +1697,7 @@ To wit:</p>
<td>.643</td>
<td>.786</td>
<td>.929</td>
- <td>1.0</td>
- <td> </td>
+ <td>1.000</td>
</tr>
<tr>
<td>Rank input</td>
@@ -1694,10 +1706,9 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
+ <td><em>.786</em></td>
<td> </td>
<td> </td>
- <td>1.0</td>
- <td> </td>
</tr>
<tr>
<td>Qualifying pair</td>
@@ -1705,11 +1716,10 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
+ <td>r1</td>
+ <td>r2</td>
<td> </td>
<td> </td>
- <td> </td>
- <td>r1</td>
- <td>(r2)</td>
</tr>
<tr>
<td>Quantile result</td>
@@ -1718,16 +1728,15 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
+ <td>30</td>
<td> </td>
<td> </td>
- <td> </td>
- <td>50</td>
</tr>
</tbody>
</table>
<ul>
- <li><em>q(0.99) = 50</em> Normal rule applies <em>.929 <= .99 <
1.0</em>, return <em>50</em>.</li>
+ <li><em>q(_1.0_) = 50</em> Normal rule applies: <em>.929 < _1.0_ <=
1.0</em>, return <em>q(r2) = 50</em>.</li>
</ul>
<table>
@@ -1775,8 +1784,8 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>.99</td>
<td> </td>
+ <td><em>1.0</em></td>
</tr>
<tr>
<td>Qualifying pair</td>
@@ -1804,7 +1813,7 @@ To wit:</p>
</table>
<ul>
- <li><em>q(0.0 <= .071) = 10</em> Use Boundary Rule 2: <em>0.0 <
.071</em>, return <em>10</em>.</li>
+ <li><em>q(_0.0_ <= .071) = 10</em> Use Boundary Rule QI-1: <em>_0.0_
<= .071</em>, return <em>10</em>.</li>
</ul>
<table>
@@ -1849,7 +1858,7 @@ To wit:</p>
</tr>
<tr>
<td>Rank input</td>
- <td>0.0</td>
+ <td><em>0.0</em></td>
<td> </td>
<td> </td>
<td> </td>
@@ -1888,28 +1897,25 @@ To wit:</p>
<hr />
-<h3
id="quantilerank-exclusive_strict-or-qr-gt_strict-given-r-return-the-quantile-q-of-the-smallest-rank-that-is-strictly-greater-than-r"><strong><em>quantile(rank,
EXCLUSIVE_STRICT)</em></strong> or <strong><em>q(r, GT_STRICT)</em></strong>
:=<br />Given <em>r</em>, return the quantile, <em>q</em>, of the smallest rank
that is strictly Greater Than <em>r</em>.</h3>
-
-<h3
id="note-this-rule-is-marginal-in-its-usefulness-so-it-is-not-currently-implemented">Note:
This rule is marginal in its usefulness so it is not currently
implemented.</h3>
+<h3
id="quantilerank-exclusive-or-qr-gt-given-r-return-the-quantile-q-of-the-smallest-rank-that-is-strictly-greater-than-r"><strong><em>quantile(rank,
EXCLUSIVE)</em></strong> or <strong><em>Q(r, GT)</em></strong> :=<br />Given
<em>r</em>, return the quantile, <em>q</em>, of the smallest rank that is
strictly Greater Than <em>r</em>.</h3>
-<p><b>Implementation:</b></p>
+<p><em>Implementation: Normal Rule</em></p>
<ul>
<li>Given <em>r</em>, search the rank array until we find the adjacent pair
<em>{r1, r2}</em> where <em>r1 <= r < r2</em>.</li>
<li>Return the quantile, <em>q</em>, associated with <em>r2</em>, the second
of the pair.</li>
</ul>
-<p><b>Boundary Exceptions:</b></p>
+<p><em>Boundary Exceptions:</em></p>
<ul>
- <li><strong>Boundary Rule 1:</strong> If the given normalized rank,
<em>r</em>, is equal to <em>1.0</em>, there is no quantile that satisfies this
criterion. Return <em>NaN</em> or <em>null</em>.</li>
- <li><strong>Boundary Rule 2:</strong> If the given normalized rank,
<em>r</em>, is less than the smallest rank, the function will return the
quantile associated with the smallest cumulative rank retained by the
sketch..</li>
+ <li><strong>Boundary Rule QE-1:</strong> If the given normalized rank,
<em>r</em>, is equal to 1.0, there is no rank greater than 1.0, nor a
corresponding quantile that satisfies this criterion. However, for convenience,
the function will return the maximum item of the input stream.</li>
</ul>
-<p><b>Examples using normalized ranks:</b></p>
+<p><em>Examples using normalized ranks. The given value is
underlined.</em></p>
<ul>
- <li><em>q(.357) = 30</em> Normal rule applies: <em>.357 <= .357 <
.500</em>, return <em>q(r2) = 30</em>.</li>
+ <li><em>q(_.357_) = 30</em> Normal rule applies: <em>.357 <= _.357_ <
.500</em>, return <em>Q(r2) = 30</em>.</li>
</ul>
<table>
@@ -1953,7 +1959,7 @@ To wit:</p>
<td>Rank input</td>
<td> </td>
<td> </td>
- <td>.357</td>
+ <td><em>.357</em></td>
<td> </td>
<td> </td>
<td> </td>
@@ -1986,7 +1992,7 @@ To wit:</p>
</table>
<ul>
- <li><em>q(1.0) = 50</em> Use Boundary Rule 1 <em>1.0 <= 1.0 < ?</em>,
return <em>NaN or null</em>.</li>
+ <li><em>q(_1.0_) = 50</em> Use Boundary Rule QE-1: <em>_1.0_ = 1.0</em>,
return <em>50</em>.</li>
</ul>
<table>
@@ -2038,7 +2044,7 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>1.0</td>
+ <td><em>1.0</em></td>
<td> </td>
</tr>
<tr>
@@ -2063,13 +2069,13 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>NaN or null</td>
+ <td>50</td>
</tr>
</tbody>
</table>
<ul>
- <li><em>q(0.99) = 50</em> Normal rule applies <em>.929 <= .99 <
1.0</em>, return <em>50</em>.</li>
+ <li><em>q(_0.99_) = 50</em> Normal rule applies: <em>.929 <= _.99_ <
1.0</em>, return <em>Q(r2) = 50</em>.</li>
</ul>
<table>
@@ -2117,7 +2123,7 @@ To wit:</p>
<td> </td>
<td> </td>
<td> </td>
- <td>.99</td>
+ <td><em>.99</em></td>
<td> </td>
</tr>
<tr>
@@ -2146,7 +2152,7 @@ To wit:</p>
</table>
<ul>
- <li><em>q(0.0 <= .071) = 10</em> Use Boundary Rule 2: <em>0.0 <
.071</em>, return <em>10</em>.</li>
+ <li><em>q(_0.0_) = 10</em> Normal rule applies: <em>0.0 <= _0.0_ <
.071</em>, return <em>10</em>.</li>
</ul>
<table>
@@ -2191,7 +2197,7 @@ To wit:</p>
</tr>
<tr>
<td>Rank input</td>
- <td>0.0</td>
+ <td><em>0.0</em></td>
<td> </td>
<td> </td>
<td> </td>
@@ -2228,19 +2234,124 @@ To wit:</p>
</tbody>
</table>
+<hr />
+
+<h3
id="quantilerank-exclusive_strict-or-qr-gt_strict-given-r-return-the-quantile-q-of-the-smallest-rank-that-is-strictly-greater-than-r"><strong><em>quantile(rank,
EXCLUSIVE_STRICT)</em></strong> or <strong><em>q(r, GT_STRICT)</em></strong>
:=<br />Given <em>r</em>, return the quantile, <em>q</em>, of the smallest rank
that is strictly Greater Than <em>r</em>.</h3>
+
+<h3
id="note-this-rule-is-marginal-in-its-usefulness-so-it-is-not-currently-implemented">Note:
This rule is marginal in its usefulness so it is not currently
implemented.</h3>
+
+<p><em>Implementation: Normal Rule</em></p>
+
+<ul>
+ <li>Given <em>r</em>, search the rank array until we find the adjacent pair
<em>{r1, r2}</em> where <em>r1 <= r < r2</em>.</li>
+ <li>Return the quantile, <em>q</em>, associated with <em>r2</em>, the second
of the pair.</li>
+</ul>
+
+<p><em>Boundary Exceptions:</em></p>
+
+<ul>
+ <li><strong>Boundary Rule QES-1:</strong> If the given normalized rank,
<em>r</em>, is equal to <em>1.0</em>, there is no quantile that satisfies this
criterion. Return <em>NaN</em> or <em>null</em>.</li>
+</ul>
+
+<p><em>Examples using normalized ranks. The given value is
underlined.</em></p>
+
+<p><em>There is only one case where this strict case would apply:</em></p>
+
+<ul>
+ <li><em>q(_1.0_) = Nan or null</em> Use Boundary Rule QES-1: <em>_1.0_ =
1.0</em>, return <em>NaN or null</em>.</li>
+</ul>
+
+<table>
+ <thead>
+ <tr>
+ <th>Quantile[]:</th>
+ <th>10</th>
+ <th>20</th>
+ <th>20</th>
+ <th>30</th>
+ <th>30</th>
+ <th>30</th>
+ <th>40</th>
+ <th>50</th>
+ <th>?</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>Natural Rank[]:</td>
+ <td>1</td>
+ <td>3</td>
+ <td>5</td>
+ <td>7</td>
+ <td>9</td>
+ <td>11</td>
+ <td>13</td>
+ <td>14</td>
+ <td> </td>
+ </tr>
+ <tr>
+ <td>Normalized Rank[]:</td>
+ <td>.071</td>
+ <td>.214</td>
+ <td>.357</td>
+ <td>.500</td>
+ <td>.643</td>
+ <td>.786</td>
+ <td>.929</td>
+ <td>1.0</td>
+ <td> </td>
+ </tr>
+ <tr>
+ <td>Rank input</td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td><em>1.0</em></td>
+ <td> </td>
+ </tr>
+ <tr>
+ <td>Qualifying pair</td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td>r1</td>
+ <td>(r2)</td>
+ </tr>
+ <tr>
+ <td>Quantile result</td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td> </td>
+ <td>NaN or null</td>
+ </tr>
+ </tbody>
+</table>
+
<h2
id="these-inequality-functions-maintain-the-11-functional-relationship-approximately">These
inequality functions maintain the 1:1 functional relationship,
approximately.</h2>
-<h3
id="the-exclusive-search-for-qr-is-the-inverse-of-the-exclusive-search-for-rq">The
<em>exclusive</em> search for q(r) is the inverse of the <em>exclusive</em>
search for r(q).</h3>
+<h3
id="the-exclusive-search-for-qr-is-the-inverse-of-the-exclusive-search-for-rq">The
<em>exclusive</em> search for Q(r) is the inverse of the <em>exclusive</em>
search for R(q).</h3>
<h5 id="therefore-q--qrq-and-r--rqr">Therefore, <em>q = q(r(q))</em> and <em>r
= r(q(r))</em>.</h5>
-<h3
id="the-inclusive-search-for-qr-is-the-inverse-of-the-inclusive-search-for-rq">The
<em>inclusive</em> search for q(r) is the inverse of the <em>inclusive</em>
search for r(q).</h3>
+<h3
id="the-inclusive-search-for-qr-is-the-inverse-of-the-inclusive-search-for-rq">The
<em>inclusive</em> search for Q(r) is the inverse of the <em>inclusive</em>
search for R(q).</h3>
<h5 id="therefore-q--qrq-and-r--rqr-1">Therefore, <em>q = q(r(q))</em> and
<em>r = r(q(r))</em>.</h5>
<h2 id="summary">Summary</h2>
-<p>The power of these inequality search algorithms is that they produce
repeatable and accurate results, are insensitive to duplicates and sketch
deletions, and maintain the property of 1:1 functions.</p>
-
+<p>The power of these inequality search algorithms is that they produce
repeatable and accurate results, are insensitive to duplicates and sketch
deletions, and maintain the property of 1:1 functions approximately.</p>
</div> <!-- End content -->
</div> <!-- End row -->
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]