Author: DonĂ¡t Nagy Date: 2025-01-13T14:04:28+01:00 New Revision: 21e58ee9f7de60a7e9202ad3f424ec3ad5a6fce5
URL: https://github.com/llvm/llvm-project/commit/21e58ee9f7de60a7e9202ad3f424ec3ad5a6fce5 DIFF: https://github.com/llvm/llvm-project/commit/21e58ee9f7de60a7e9202ad3f424ec3ad5a6fce5.diff LOG: [NFC][analyzer][docs] Migrate 'annotations.html' to RST (#122246) This commit migrates the contents of 'annotations.html' in the old HTML-based documentation of the Clang static analyzer to the new RST-based documentation. During this conversion I reordered the sections of this documentation file by placing the section "Custom Assertion Handlers" as a subsection of "Annotations to Enhance Generic Checks". (The primary motivation was that Sphinx complained about inconsistent section levels; with this change I preserved that sections describing individual annotations are all on the same level.) Apart from this change and the format conversion, I didn't review, validate or edit the contents of this documentation file because I think it would be better to place any additional changes in separate commits. Added: clang/docs/analyzer/images/example_attribute_nonnull.png clang/docs/analyzer/images/example_cf_returns_retained.png clang/docs/analyzer/images/example_ns_returns_retained.png clang/docs/analyzer/user-docs/Annotations.rst Modified: clang/docs/LanguageExtensions.rst clang/docs/UsersManual.rst clang/docs/analyzer/user-docs.rst clang/docs/analyzer/user-docs/FAQ.rst clang/include/clang/Basic/AttrDocs.td clang/www/analyzer/annotations.html Removed: clang/www/analyzer/images/example_attribute_nonnull.png clang/www/analyzer/images/example_cf_returns_retained.png clang/www/analyzer/images/example_ns_returns_retained.png ################################################################################ diff --git a/clang/docs/LanguageExtensions.rst b/clang/docs/LanguageExtensions.rst index e020710c7aa4f5..2eb0777dbdc6c8 100644 --- a/clang/docs/LanguageExtensions.rst +++ b/clang/docs/LanguageExtensions.rst @@ -2137,8 +2137,8 @@ method; it specifies that the method expects its ``self`` parameter to have a - (void) bar __attribute__((ns_consumes_self)); - (void) baz:(id) __attribute__((ns_consumed)) x; -Further examples of these attributes are available in the static analyzer's `list of annotations for analysis -<https://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_. +Further examples of these attributes are available in the static analyzer's +`list of annotations for analysis <analyzer/user-docs/Annotations.html#cocoa-mem>`__. Query for these features with ``__has_attribute(ns_consumed)``, ``__has_attribute(ns_returns_retained)``, etc. @@ -4792,8 +4792,8 @@ Extensions for Static Analysis Clang supports additional attributes that are useful for documenting program invariants and rules for static analysis tools, such as the `Clang Static Analyzer <https://clang-analyzer.llvm.org/>`_. These attributes are documented -in the analyzer's `list of source-level annotations -<https://clang-analyzer.llvm.org/annotations.html>`_. +in the analyzer's `list of annotations for analysis +<analyzer/user-docs/Annotations.html>`__. Extensions for Dynamic Analysis diff --git a/clang/docs/UsersManual.rst b/clang/docs/UsersManual.rst index 4de288250f3ad8..260e84910c6f78 100644 --- a/clang/docs/UsersManual.rst +++ b/clang/docs/UsersManual.rst @@ -1364,10 +1364,8 @@ Controlling Static Analyzer Diagnostics While not strictly part of the compiler, the diagnostics from Clang's `static analyzer <https://clang-analyzer.llvm.org>`_ can also be influenced by the user via changes to the source code. See the available -`annotations <https://clang-analyzer.llvm.org/annotations.html>`_ and the -analyzer's `FAQ -page <https://clang-analyzer.llvm.org/faq.html#exclude_code>`_ for more -information. +`annotations <analyzer/user-docs/Annotations.html>`_ and the analyzer's +`FAQ page <analyzer/user-docs/FAQ.html#exclude-code>`_ for more information. .. _usersmanual-precompiled-headers: diff --git a/clang/www/analyzer/images/example_attribute_nonnull.png b/clang/docs/analyzer/images/example_attribute_nonnull.png similarity index 100% rename from clang/www/analyzer/images/example_attribute_nonnull.png rename to clang/docs/analyzer/images/example_attribute_nonnull.png diff --git a/clang/www/analyzer/images/example_cf_returns_retained.png b/clang/docs/analyzer/images/example_cf_returns_retained.png similarity index 100% rename from clang/www/analyzer/images/example_cf_returns_retained.png rename to clang/docs/analyzer/images/example_cf_returns_retained.png diff --git a/clang/www/analyzer/images/example_ns_returns_retained.png b/clang/docs/analyzer/images/example_ns_returns_retained.png similarity index 100% rename from clang/www/analyzer/images/example_ns_returns_retained.png rename to clang/docs/analyzer/images/example_ns_returns_retained.png diff --git a/clang/docs/analyzer/user-docs.rst b/clang/docs/analyzer/user-docs.rst index dd53ae143148c0..e265f033a2c540 100644 --- a/clang/docs/analyzer/user-docs.rst +++ b/clang/docs/analyzer/user-docs.rst @@ -12,4 +12,5 @@ Contents: user-docs/FilingBugs user-docs/CrossTranslationUnit user-docs/TaintAnalysisConfiguration + user-docs/Annotations user-docs/FAQ diff --git a/clang/docs/analyzer/user-docs/Annotations.rst b/clang/docs/analyzer/user-docs/Annotations.rst new file mode 100644 index 00000000000000..d87e8f4df99c31 --- /dev/null +++ b/clang/docs/analyzer/user-docs/Annotations.rst @@ -0,0 +1,689 @@ +================== +Source Annotations +================== + +The Clang frontend supports several source-level annotations in the form of +`GCC-style attributes <https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html>`_ +and pragmas that can help make using the Clang Static Analyzer more useful. +These annotations can both help suppress false positives as well as enhance the +analyzer's ability to find bugs. + +This page gives a practical overview of such annotations. For more technical +specifics regarding Clang-specific annotations please see the Clang's list of +`language extensions <https://clang.llvm.org/docs/LanguageExtensions.html>`_. +Details of "standard" GCC attributes (that Clang also supports) can +be found in the `GCC manual <https://gcc.gnu.org/onlinedocs/gcc/>`_, with the +majority of the relevant attributes being in the section on +`function attributes <https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_. + +Note that attributes that are labeled **Clang-specific** are not +recognized by GCC. Their use can be conditioned using preprocessor macros +(examples included on this page). + +.. contents:: + :local: + +Annotations to Enhance Generic Checks +_____________________________________ + +Null Pointer Checking +##################### + +Attribute 'nonnull' +------------------- + +The analyzer recognizes the GCC attribute 'nonnull', which indicates that a +function expects that a given function parameter is not a null pointer. +Specific details of the syntax of using the 'nonnull' attribute can be found in +`GCC's documentation <https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-nonnull-function-attribute>`_. + +Both the Clang compiler and GCC will flag warnings for simple cases where a +null pointer is directly being passed to a function with a 'nonnull' parameter +(e.g., as a constant). The analyzer extends this checking by using its deeper +symbolic analysis to track what pointer values are potentially null and then +flag warnings when they are passed in a function call via a 'nonnull' +parameter. + +**Example** + +.. code-block:: c + + int bar(int*p, int q, int *r) __attribute__((nonnull(1,3))); + + int foo(int *p, int *q) { + return !p ? bar(q, 2, p) + : bar(p, 2, q); + } + +Running ``scan-build`` over this source produces the following output: + +.. image:: ../images/example_attribute_nonnull.png + +.. _custom_assertion_handlers: + +Custom Assertion Handlers +######################### + +The analyzer exploits code assertions by pruning off paths where the +assertion condition is false. The idea is capture any program invariants +specified in the assertion that the developer may know but is not immediately +apparent in the code itself. In this way assertions make implicit assumptions +explicit in the code, which not only makes the analyzer more accurate when +finding bugs, but can help others better able to understand your code as well. +It can also help remove certain kinds of analyzer false positives by pruning off +false paths. + +In order to exploit assertions, however, the analyzer must understand when it +encounters an "assertion handler". Typically assertions are +implemented with a macro, with the macro performing a check for the assertion +condition and, when the check fails, calling an assertion handler. For +example, consider the following code fragment: + +.. code-block: c + + void foo(int *p) { + assert(p != NULL); + } + +When this code is preprocessed on Mac OS X it expands to the following: + +.. code-block: c + + void foo(int *p) { + (__builtin_expect(!(p != NULL), 0) ? __assert_rtn(__func__, "t.c", 4, "p != NULL") : (void)0); + } + +In this example, the assertion handler is ``__assert_rtn``. When called, +most assertion handlers typically print an error and terminate the program. The +analyzer can exploit such semantics by ending the analysis of a path once it +hits a call to an assertion handler. + +The trick, however, is that the analyzer needs to know that a called function +is an assertion handler; otherwise the analyzer might assume the function call +returns and it will continue analyzing the path where the assertion condition +failed. This can lead to false positives, as the assertion condition usually +implies a safety condition (e.g., a pointer is not null) prior to performing +some action that depends on that condition (e.g., dereferencing a pointer). + +The analyzer knows about several well-known assertion handlers, but can +automatically infer if a function should be treated as an assertion handler if +it is annotated with the 'noreturn' attribute or the (Clang-specific) +'analyzer_noreturn' attribute. Note that, currently, clang does not support +these attributes on Objective-C methods and C++ methods. + +Attribute 'noreturn' +-------------------- + +The 'noreturn' attribute is a GCC attribute that can be placed on the +declarations of functions. It means exactly what its name implies: a function +with a 'noreturn' attribute should never return. + +Specific details of the syntax of using the 'noreturn' attribute can be found +in `GCC's documentation <https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-noreturn-function-attribute>`__. + +Not only does the analyzer exploit this information when pruning false paths, +but the compiler also takes it seriously and will generate diff erent code (and +possibly better optimized) under the assumption that the function does not +return. + +**Example** + +On Mac OS X, the function prototype for ``__assert_rtn`` (declared in +``assert.h``) is specifically annotated with the 'noreturn' attribute: + +.. code-block: c + + void __assert_rtn(const char *, const char *, int, const char *) __attribute__((__noreturn__)); + +Attribute 'analyzer_noreturn' (Clang-specific) +---------------------------------------------- + +The Clang-specific 'analyzer_noreturn' attribute is almost identical to +'noreturn' except that it is ignored by the compiler for the purposes of code +generation. + +This attribute is useful for annotating assertion handlers that actually +*can* return, but for the purpose of using the analyzer we want to +pretend that such functions do not return. + +Because this attribute is Clang-specific, its use should be conditioned with +the use of preprocessor macros. + +**Example** + +.. code-block: c + + #ifndef CLANG_ANALYZER_NORETURN + #if __has_feature(attribute_analyzer_noreturn) + #define CLANG_ANALYZER_NORETURN __attribute__((analyzer_noreturn)) + #else + #define CLANG_ANALYZER_NORETURN + #endif + #endif + + void my_assert_rtn(const char *, const char *, int, const char *) CLANG_ANALYZER_NORETURN; + +Mac OS X API Annotations +________________________ + +.. _cocoa_mem: + +Cocoa & Core Foundation Memory Management Annotations +##################################################### + +The analyzer supports the proper management of retain counts for +both Cocoa and Core Foundation objects. This checking is largely based on +enforcing Cocoa and Core Foundation naming conventions for Objective-C methods +(Cocoa) and C functions (Core Foundation). Not strictly following these +conventions can cause the analyzer to miss bugs or flag false positives. + +One can educate the analyzer (and others who read your code) about methods or +functions that deviate from the Cocoa and Core Foundation conventions using the +attributes described here. However, you should consider using proper naming +conventions or the `objc_method_family <https://clang.llvm.org/docs/LanguageExtensions.html#the-objc-method-family-attribute>`_ +attribute, if applicable. + +.. _ns_returns_retained: + +Attribute 'ns_returns_retained' (Clang-specific) +------------------------------------------------ + +The GCC-style (Clang-specific) attribute 'ns_returns_retained' allows one to +annotate an Objective-C method or C function as returning a retained Cocoa +object that the caller is responsible for releasing (via sending a +``release`` message to the object). The Foundation framework defines a +macro ``NS_RETURNS_RETAINED`` that is functionally equivalent to the +one shown below. + +**Placing on Objective-C methods**: For Objective-C methods, this +annotation essentially tells the analyzer to treat the method as if its name +begins with "alloc" or "new" or contains the word +"copy". + +**Placing on C functions**: For C functions returning Cocoa objects, the +analyzer typically does not make any assumptions about whether or not the object +is returned retained. Explicitly adding the 'ns_returns_retained' attribute to C +functions allows the analyzer to perform extra checking. + +**Example** + +.. code-block: objc + + #import <Foundation/Foundation.h>; + + #ifndef __has_feature // Optional. + #define __has_feature(x) 0 // Compatibility with non-clang compilers. + #endif + + #ifndef NS_RETURNS_RETAINED + #if __has_feature(attribute_ns_returns_retained) + #define NS_RETURNS_RETAINED __attribute__((ns_returns_retained)) + #else + #define NS_RETURNS_RETAINED + #endif + #endif + + @interface MyClass : NSObject {} + - (NSString*) returnsRetained NS_RETURNS_RETAINED; + - (NSString*) alsoReturnsRetained; + @end + + @implementation MyClass + - (NSString*) returnsRetained { + return [[NSString alloc] initWithCString:"no leak here"]; + } + - (NSString*) alsoReturnsRetained { + return [[NSString alloc] initWithCString:"flag a leak"]; + } + @end + +Running ``scan-build`` on this source file produces the following output: + +.. image:: ../images/example_ns_returns_retained.png + +.. _ns_returns_not_retained: + +Attribute 'ns_returns_not_retained' (Clang-specific) +---------------------------------------------------- + +The 'ns_returns_not_retained' attribute is the complement of +'`ns_returns_retained`_'. Where a function or method may appear to obey the +Cocoa conventions and return a retained Cocoa object, this attribute can be +used to indicate that the object reference returned should not be considered as +an "owning" reference being returned to the caller. The Foundation +framework defines a macro ``NS_RETURNS_NOT_RETAINED`` that is functionally +equivalent to the one shown below. + +Usage is identical to `ns_returns_retained`_. When using the +attribute, be sure to declare it within the proper macro that checks for +its availability, as it is not available in earlier versions of the analyzer: + +.. code-block:objc + + #ifndef __has_feature // Optional. + #define __has_feature(x) 0 // Compatibility with non-clang compilers. + #endif + + #ifndef NS_RETURNS_NOT_RETAINED + #if __has_feature(attribute_ns_returns_not_retained) + #define NS_RETURNS_NOT_RETAINED __attribute__((ns_returns_not_retained)) + #else + #define NS_RETURNS_NOT_RETAINED + #endif + #endif + +.. _cf_returns_retained: + +Attribute 'cf_returns_retained' (Clang-specific) +------------------------------------------------ + +The GCC-style (Clang-specific) attribute 'cf_returns_retained' allows one to +annotate an Objective-C method or C function as returning a retained Core +Foundation object that the caller is responsible for releasing. The +CoreFoundation framework defines a macro ``CF_RETURNS_RETAINED`` that is +functionally equivalent to the one shown below. + +**Placing on Objective-C methods**: With respect to Objective-C methods., +this attribute is identical in its behavior and usage to 'ns_returns_retained' +except for the distinction of returning a Core Foundation object instead of a +Cocoa object. + +This distinction is important for the following reason: as Core Foundation is a +C API, the analyzer cannot always tell that a pointer return value refers to a +Core Foundation object. In contrast, it is trivial for the analyzer to +recognize if a pointer refers to a Cocoa object (given the Objective-C type +system). + +**Placing on C functions**: When placing the attribute +'cf_returns_retained' on the declarations of C functions, the analyzer +interprets the function as: + +1. Returning a Core Foundation Object +2. Treating the function as if it its name contained the keywords + "create" or "copy". This means the returned object as a + +1 retain count that must be released by the caller, either by sending a + ``release`` message (via toll-free bridging to an Objective-C object + pointer), or calling ``CFRelease`` or a similar function. + +**Example** + +.. code-block:objc + + #import <Cocoa/Cocoa.h> + + #ifndef __has_feature // Optional. + #define __has_feature(x) 0 // Compatibility with non-clang compilers. + #endif + + #ifndef CF_RETURNS_RETAINED + #if __has_feature(attribute_cf_returns_retained) + #define CF_RETURNS_RETAINED __attribute__((cf_returns_retained)) + #else + #define CF_RETURNS_RETAINED + #endif + #endif + + @interface MyClass : NSObject {} + - (NSDate*) returnsCFRetained CF_RETURNS_RETAINED; + - (NSDate*) alsoReturnsRetained; + - (NSDate*) returnsNSRetained NS_RETURNS_RETAINED; + @end + + CF_RETURNS_RETAINED + CFDateRef returnsRetainedCFDate() { + return CFDateCreate(0, CFAbsoluteTimeGetCurrent()); + } + + @implementation MyClass + - (NSDate*) returnsCFRetained { + return (NSDate*) returnsRetainedCFDate(); // No leak. + } + + - (NSDate*) alsoReturnsRetained { + return (NSDate*) returnsRetainedCFDate(); // Always report a leak. + } + + - (NSDate*) returnsNSRetained { + return (NSDate*) returnsRetainedCFDate(); // Report a leak when using GC. + } + @end + +Running ``scan-build`` on this example produces the following output: + +.. image:: ../images/example_cf_returns_retained.png + +Attribute 'cf_returns_not_retained' (Clang-specific) +---------------------------------------------------- + +The 'cf_returns_not_retained' attribute is the complement of +'`cf_returns_retained`_'. Where a function or method may appear to obey the +Core Foundation or Cocoa conventions and return a retained Core Foundation +object, this attribute can be used to indicate that the object reference +returned should not be considered as an "owning" reference being +returned to the caller. The CoreFoundation framework defines a macro +**``CF_RETURNS_NOT_RETAINED``** that is functionally equivalent to the one +shown below. + +Usage is identical to cf_returns_retained_. When using the attribute, be sure +to declare it within the proper macro that checks for its availability, as it +is not available in earlier versions of the analyzer: + +.. code-block:objc + + #ifndef __has_feature // Optional. + #define __has_feature(x) 0 // Compatibility with non-clang compilers. + #endif + + #ifndef CF_RETURNS_NOT_RETAINED + #if __has_feature(attribute_cf_returns_not_retained) + #define CF_RETURNS_NOT_RETAINED __attribute__((cf_returns_not_retained)) + #else + #define CF_RETURNS_NOT_RETAINED + #endif + #endif + +.. _ns_consumed: + +Attribute 'ns_consumed' (Clang-specific) +---------------------------------------- + +The 'ns_consumed' attribute can be placed on a specific parameter in either +the declaration of a function or an Objective-C method. It indicates to the +static analyzer that a ``release`` message is implicitly sent to the +parameter upon completion of the call to the given function or method. The +Foundation framework defines a macro ``NS_RELEASES_ARGUMENT`` that +is functionally equivalent to the ``NS_CONSUMED`` macro shown below. + +**Example** + +.. code-block:objc + + #ifndef __has_feature // Optional. + #define __has_feature(x) 0 // Compatibility with non-clang compilers. + #endif + + #ifndef NS_CONSUMED + #if __has_feature(attribute_ns_consumed) + #define NS_CONSUMED __attribute__((ns_consumed)) + #else + #define NS_CONSUMED + #endif + #endif + + void consume_ns(id NS_CONSUMED x); + + void test() { + id x = [[NSObject alloc] init]; + consume_ns(x); // No leak! + } + + @interface Foo : NSObject + + (void) releaseArg:(id) NS_CONSUMED x; + + (void) releaseSecondArg:(id)x second:(id) NS_CONSUMED y; + @end + + void test_method() { + id x = [[NSObject alloc] init]; + [Foo releaseArg:x]; // No leak! + } + + void test_method2() { + id a = [[NSObject alloc] init]; + id b = [[NSObject alloc] init]; + [Foo releaseSecondArg:a second:b]; // 'a' is leaked, but 'b' is released. + } + +Attribute 'cf_consumed' (Clang-specific) +---------------------------------------- + +The 'cf_consumed' attribute is practically identical to ns_consumed_. The +attribute can be placed on a specific parameter in either the declaration of a +function or an Objective-C method. It indicates to the static analyzer that the +object reference is implicitly passed to a call to ``CFRelease`` upon +completion of the call to the given function or method. The CoreFoundation +framework defines a macro ``CF_RELEASES_ARGUMENT`` that is functionally +equivalent to the ``CF_CONSUMED`` macro shown below. + +Operationally this attribute is nearly identical to 'ns_consumed'. + +**Example** + +.. code-block:objc + + #ifndef __has_feature // Optional. + #define __has_feature(x) 0 // Compatibility with non-clang compilers. + #endif + + #ifndef CF_CONSUMED + #if __has_feature(attribute_cf_consumed) + #define CF_CONSUMED __attribute__((cf_consumed)) + #else + #define CF_CONSUMED + #endif + #endif + + void consume_cf(id CF_CONSUMED x); + void consume_CFDate(CFDateRef CF_CONSUMED x); + + void test() { + id x = [[NSObject alloc] init]; + consume_cf(x); // No leak! + } + + void test2() { + CFDateRef date = CFDateCreate(0, CFAbsoluteTimeGetCurrent()); + consume_CFDate(date); // No leak, including under GC! + + } + + @interface Foo : NSObject + + (void) releaseArg:(CFDateRef) CF_CONSUMED x; + @end + + void test_method() { + CFDateRef date = CFDateCreate(0, CFAbsoluteTimeGetCurrent()); + [Foo releaseArg:date]; // No leak! + } + +.. _ns_consumes_self: + +Attribute 'ns_consumes_self' (Clang-specific) +--------------------------------------------- + +The 'ns_consumes_self' attribute can be placed only on an Objective-C method +declaration. It indicates that the receiver of the message is +"consumed" (a single reference count decremented) after the message +is sent. This matches the semantics of all "init" methods. + +One use of this attribute is declare your own init-like methods that do not +follow the standard Cocoa naming conventions. + +**Example** + +.. code-block:objc + #ifndef __has_feature + #define __has_feature(x) 0 // Compatibility with non-clang compilers. + #endif + + #ifndef NS_CONSUMES_SELF + #if __has_feature((attribute_ns_consumes_self)) + #define NS_CONSUMES_SELF __attribute__((ns_consumes_self)) + #else + #define NS_CONSUMES_SELF + #endif + #endif + + @interface MyClass : NSObject + - initWith:(MyClass *)x; + - nonstandardInitWith:(MyClass *)x NS_CONSUMES_SELF NS_RETURNS_RETAINED; + @end + +In this example, ``-nonstandardInitWith:`` has the same ownership +semantics as the init method ``-initWith:``. The static analyzer will +observe that the method consumes the receiver, and then returns an object with +a +1 retain count. + +The Foundation framework defines a macro ``NS_REPLACES_RECEIVER`` which is +functionally equivalent to the combination of ``NS_CONSUMES_SELF`` and +``NS_RETURNS_RETAINED`` shown above. + +Libkern Memory Management Annotations +##################################### + +`Libkern <https://developer.apple.com/documentation/kernel/osobject?language=objc>`_ +requires developers to inherit all heap allocated objects from ``OSObject`` and +to perform manual reference counting. The reference counting model is very +similar to MRR (manual retain-release) mode in +`Objective-C <https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_ +or to CoreFoundation reference counting. +Freshly-allocated objects start with a reference count of 1, and calls to +``retain`` increment it, while calls to ``release`` decrement it. The object is +deallocated whenever its reference count reaches zero. + +Manually incrementing and decrementing reference counts is error-prone: +over-retains lead to leaks, and over-releases lead to uses-after-free. +The analyzer can help the programmer to check for unbalanced +retain/release calls. + +The reference count checking is based on the principle of *locality*: it should +be possible to establish correctness (lack of leaks/uses after free) by looking +at each function body, and the declarations (not the definitions) of all the +functions it interacts with. + +In order to support such reasoning, it should be possible to *summarize* the +behavior of each function, with respect to reference count of its returned +values and attributes. + +By default, the following summaries are assumed: + +- All functions starting with ``get`` or ``Get``, unless they are returning + subclasses of ``OSIterator``, are assumed to be returning at +0. That is, the + caller has no reference count *obligations* with respect to the reference + count of the returned object and should leave it untouched. + +- All other functions are assumed to return at +1. That is, the caller has an + *obligation* to release such objects. + +- Functions are assumed not to change the reference count of their parameters, + including the implicit ``this`` parameter. + +These summaries can be overriden with the following +`attributes <https://clang.llvm.org/docs/AttributeReference.html#os-returns-not-retained>`_: + +Attribute 'os_returns_retained' +------------------------------- + +The ``os_returns_retained`` attribute (accessed through the macro +``LIBKERN_RETURNS_RETAINED``) plays a role identical to `ns_returns_retained`_ +for functions returning ``OSObject`` subclasses. The attribute indicates that +it is a callers responsibility to release the returned object. + +Attribute 'os_returns_not_retained' +----------------------------------- + +The ``os_returns_not_retained`` attribute (accessed through the macro +``LIBKERN_RETURNS_NOT_RETAINED``) plays a role identical to +`ns_returns_not_retained`_ for functions returning ``OSObject`` subclasses. The +attribute indicates that the caller should not change the retain count of the +returned object. + + +**Example** + +.. code-block:objc + + class MyClass { + OSObject *f; + LIBKERN_RETURNS_NOT_RETAINED OSObject *myFieldGetter(); + } + + + // Note that the annotation only has to be applied to the function declaration. + OSObject * MyClass::myFieldGetter() { + return f; + } + +Attribute 'os_consumed' +----------------------- + +Similarly to `ns_consumed`_ attribute, ``os_consumed`` (accessed through +``LIBKERN_CONSUMED``) attribute, applied to a parameter, indicates that the +call to the function *consumes* the parameter: the callee should either release +it or store it and release it in the destructor, while the caller should assume +one is subtracted from the reference count after the call. + +.. code-block:objc + IOReturn addToList(LIBKERN_CONSUMED IOPMinformee *newInformee); + +Attribute 'os_consumes_this' +---------------------------- + +Similarly to `ns_consumes_self`_, the ``os_consumes_self`` attribute indicates +that the method call *consumes* the implicit ``this`` argument: the caller +should assume one was subtracted from the reference count of the object after +the call, and the callee has on obligation to either release the argument, or +store it and eventually release it in the destructor. + + +.. code-block:objc + void addThisToList(OSArray *givenList) LIBKERN_CONSUMES_THIS; + +Out Parameters +-------------- + +A function can also return an object to a caller by a means of an out parameter +(a pointer-to-OSObject-pointer is passed, and a callee writes a pointer to an +object into an argument). Currently the analyzer does not track unannotated out +parameters by default, but with annotations we distinguish four separate cases: + +**1. Non-retained out parameters**, identified using +``LIBKERN_RETURNS_NOT_RETAINED`` applied to parameters, e.g.: + +.. code-block:objc + void getterViaOutParam(LIBKERN_RETURNS_NOT_RETAINED OSObject **obj) + +Such functions write a non-retained object into an out parameter, and the +caller has no further obligations. + +**2. Retained out parameters**, identified using ``LIBKERN_RETURNS_RETAINED``: + +.. code-block:objc + void getterViaOutParam(LIBKERN_RETURNS_NOT_RETAINED OSObject **obj) + +In such cases a retained object is written into an out parameter, which the caller has then to release in order to avoid a leak. + +These two cases are simple - but in practice a functions returning an +out-parameter usually also return a return code, and then an out parameter may +or may not be written, which conditionally depends on the exit code, e.g.: + +.. code-block:objc + bool maybeCreateObject(LIBKERN_RETURNS_RETAINED OSObject **obj); + +For such functions, the usual semantics is that an object is written into on "success", and not written into on "failure". + +For ``LIBKERN_RETURNS_RETAINED`` we assume the following definition of +success: + +- For functions returning ``OSReturn`` or ``IOReturn`` (any typedef to + ``kern_return_t``) success is defined as having an output of zero + (``kIOReturnSuccess`` is zero). + +- For all others, success is non-zero (e.g. non-nullptr for pointers) + +**3. Retained out parameters on zero return** The annotation +``LIBKERN_RETURNS_RETAINED_ON_ZERO`` states that a retained object is written +into if and only if the function returns a zero value: + +.. code-block:objc + bool OSUnserializeXML(void *data, LIBKERN_RETURNS_RETAINED_ON_ZERO OSString **errString); + +Then the caller has to release an object if the function has returned zero. + +**4. Retained out parameters on non-zero return** Similarly, +``LIBKERN_RETURNS_RETAINED_ON_NONZERO`` specifies that a retained object is +written into the parameter if and only if the function has returned a non-zero +value. + +Note that for non-retained out parameters conditionals do not matter, as the +caller has no obligations regardless of whether an object is written into or +not. diff --git a/clang/docs/analyzer/user-docs/FAQ.rst b/clang/docs/analyzer/user-docs/FAQ.rst index af52e99c91d68b..e1147916a767cf 100644 --- a/clang/docs/analyzer/user-docs/FAQ.rst +++ b/clang/docs/analyzer/user-docs/FAQ.rst @@ -9,7 +9,7 @@ Custom Assertions Q: How do I tell the analyzer that I do not want the bug being reported here since my custom error handler will safely end the execution before the bug is reached? -You can tell the analyzer that this path is unreachable by teaching it about your `custom assertion handlers <annotations.html#custom_assertions>`_. For example, you can modify the code segment as following: +You can tell the analyzer that this path is unreachable by teaching it about your `custom assertion handlers <Annotations.html#custom-assertion-handlers>`__. For example, you can modify the code segment as following: .. code-block:: c @@ -162,7 +162,7 @@ Suppressing Specific Warnings Q: How can I suppress a specific analyzer warning? -When you encounter an analyzer bug/false positive, check if it's one of the issues discussed above or if the analyzer `annotations <annotations.html#custom_assertions>`_ can resolve the issue by helping the static analyzer understand the code better. Second, please `report it <filing_bugs.html>`_ to help us improve user experience. +When you encounter an analyzer bug/false positive, check if it's one of the issues discussed above or if the analyzer `annotations <Annotations.html#custom-assertion-handlers>`__ can resolve the issue by helping the static analyzer understand the code better. Second, please `report it <FilingBugs.html>`_ to help us improve user experience. Sometimes there's really no "good" way to eliminate the issue. In such cases you can "silence" it directly by annotating the problematic line of code with the help of Clang attribute 'suppress': @@ -192,6 +192,8 @@ Sometimes there's really no "good" way to eliminate the issue. In such cases you return *result; // as well as this leak path } +.. _exclude_code: + Excluding Code from Analysis ---------------------------- diff --git a/clang/include/clang/Basic/AttrDocs.td b/clang/include/clang/Basic/AttrDocs.td index 953ff9a700e512..e10f24e239eceb 100644 --- a/clang/include/clang/Basic/AttrDocs.td +++ b/clang/include/clang/Basic/AttrDocs.td @@ -1461,7 +1461,7 @@ Mind that many more checkers are affected by dynamic memory modeling changes to some extent. Further reading for other annotations: -`Source Annotations in the Clang Static Analyzer <https://clang-analyzer.llvm.org/annotations.html>`_. +`Source Annotations in the Clang Static Analyzer <https://clang.llvm.org/docs/analyzer/user-docs/Annotations.html>`_. }]; } diff --git a/clang/www/analyzer/annotations.html b/clang/www/analyzer/annotations.html index bf0076e5142782..b19d47bce26620 100644 --- a/clang/www/analyzer/annotations.html +++ b/clang/www/analyzer/annotations.html @@ -3,6 +3,8 @@ <html> <head> <title>Source Annotations</title> + <link rel="canonical" href="https://clang.llvm.org/docs/analyzer/user-docs/Annotations.html"/> + <meta http-equiv="refresh" content="0;url=https://clang.llvm.org/docs/analyzer/user-docs/Annotations.html" /> <link type="text/css" rel="stylesheet" href="menu.css"> <link type="text/css" rel="stylesheet" href="content.css"> <script type="text/javascript" src="scripts/menu.js"></script> @@ -15,765 +17,11 @@ <div id="content"> <h1>Source Annotations</h1> +<p style="color:red; font-size:200%">This page is deprecated and will be removed in release 21.0</p> +<p>Its content was migrated to <a href="https://clang.llvm.org/docs/analyzer/user-docs/Annotations.html">the regular LLVM documentation</a>.</p> +<script>window.location='https://clang.llvm.org/docs/analyzer/user-docs/Annotations.html'</script> -<p>The Clang frontend supports several source-level annotations in the form of -<a href="https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html">GCC-style -attributes</a> and pragmas that can help make using the Clang Static Analyzer -more useful. These annotations can both help suppress false positives as well as -enhance the analyzer's ability to find bugs.</p> - -<p>This page gives a practical overview of such annotations. For more technical -specifics regarding Clang-specific annotations please see the Clang's list of <a -href="https://clang.llvm.org/docs/LanguageExtensions.html">language -extensions</a>. Details of "standard" GCC attributes (that Clang also -supports) can be found in the <a href="https://gcc.gnu.org/onlinedocs/gcc/">GCC -manual</a>, with the majority of the relevant attributes being in the section on -<a href="https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html">function -attributes</a>.</p> - -<p>Note that attributes that are labeled <b>Clang-specific</b> are not -recognized by GCC. Their use can be conditioned using preprocessor macros -(examples included on this page).</p> - -<h4>Specific Topics</h4> - -<ul> -<li><a href="#generic">Annotations to Enhance Generic Checks</a> - <ul> - <li><a href="#null_checking"><span>Null Pointer Checking</span></a> - <ul> - <li><a href="#attr_nonnull"><span>Attribute 'nonnull'</span></a></li> - </ul> - </li> - </ul> -</li> -<li><a href="#macosx">Mac OS X API Annotations</a> - <ul> - <li><a href="#cocoa_mem">Cocoa & Core Foundation Memory Management Annotations</a> - <ul> - <li><a href="#attr_ns_returns_retained">Attribute 'ns_returns_retained'</a></li> - <li><a href="#attr_ns_returns_not_retained">Attribute 'ns_returns_not_retained'</a></li> - <li><a href="#attr_cf_returns_retained">Attribute 'cf_returns_retained'</a></li> - <li><a href="#attr_cf_returns_not_retained">Attribute 'cf_returns_not_retained'</a></li> - <li><a href="#attr_ns_consumed">Attribute 'ns_consumed'</a></li> - <li><a href="#attr_cf_consumed">Attribute 'cf_consumed'</a></li> - <li><a href="#attr_ns_consumes_self">Attribute 'ns_consumes_self'</a></li> - </ul> - </li> - <li><a href="#osobject_mem">Libkern Memory Management Annotations</a> - <ul> - <li><a href="#attr_os_returns_retained">Attribute 'os_returns_retained'</a></li> - <li><a href="#attr_os_returns_not_retained">Attribute 'os_returns_not_retained'</a></li> - <li><a href="#attr_os_consumed">Attribute 'os_consumed'</a></li> - <li><a href="#attr_os_consumes_this">Attribute 'os_consumes_this'</a></li> - <li><a href="#os_out_parameters">Out Parameters</a></li> - </ul> - - </li> - </ul> -</li> -<li><a href="#custom_assertions">Custom Assertion Handlers</a> - <ul> - <li><a href="#attr_noreturn">Attribute 'noreturn'</a></li> - <li><a href="#attr_analyzer_noreturn">Attribute 'analyzer_noreturn'</a></li> - </ul> - </li> -</ul> - -<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --> -<h2 id="generic">Annotations to Enhance Generic Checks</h2> -<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --> - -<h3 id="null_checking">Null Pointer Checking</h3> - -<h4 id="attr_nonnull">Attribute 'nonnull'</h4> - -<p>The analyzer recognizes the GCC attribute 'nonnull', which indicates that a -function expects that a given function parameter is not a null pointer. Specific -details of the syntax of using the 'nonnull' attribute can be found in <a -href="https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-nonnull-function-attribute">GCC's -documentation</a>.</p> - -<p>Both the Clang compiler and GCC will flag warnings for simple cases where a -null pointer is directly being passed to a function with a 'nonnull' parameter -(e.g., as a constant). The analyzer extends this checking by using its deeper -symbolic analysis to track what pointer values are potentially null and then -flag warnings when they are passed in a function call via a 'nonnull' -parameter.</p> - -<p><b>Example</b></p> - -<pre class="code_example"> -<span class="command">$ cat test.m</span> -int bar(int*p, int q, int *r) __attribute__((nonnull(1,3))); - -int foo(int *p, int *q) { - return !p ? bar(q, 2, p) - : bar(p, 2, q); -} -</pre> - -<p>Running <tt>scan-build</tt> over this source produces the following -output:</p> - -<img src="images/example_attribute_nonnull.png" alt="example attribute nonnull"> - -<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --> -<h2 id="macosx">Mac OS X API Annotations</h2> -<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --> - -<h3 id="cocoa_mem">Cocoa & Core Foundation Memory Management -Annotations</h3> - -<!-- -<p>As described in <a href="/available_checks.html#retain_release">Available -Checks</a>, ---> -<p>The analyzer supports the proper management of retain counts for -both Cocoa and Core Foundation objects. This checking is largely based on -enforcing Cocoa and Core Foundation naming conventions for Objective-C methods -(Cocoa) and C functions (Core Foundation). Not strictly following these -conventions can cause the analyzer to miss bugs or flag false positives.</p> - -<p>One can educate the analyzer (and others who read your code) about methods or -functions that deviate from the Cocoa and Core Foundation conventions using the -attributes described here. However, you should consider using proper naming -conventions or the <a -href="https://clang.llvm.org/docs/LanguageExtensions.html#the-objc-method-family-attribute"><tt>objc_method_family</tt></a> -attribute, if applicable.</p> - -<h4 id="attr_ns_returns_retained">Attribute 'ns_returns_retained' -(Clang-specific)</h4> - -<p>The GCC-style (Clang-specific) attribute 'ns_returns_retained' allows one to -annotate an Objective-C method or C function as returning a retained Cocoa -object that the caller is responsible for releasing (via sending a -<tt>release</tt> message to the object). The Foundation framework defines a -macro <b><tt>NS_RETURNS_RETAINED</tt></b> that is functionally equivalent to the -one shown below.</p> - -<p><b>Placing on Objective-C methods</b>: For Objective-C methods, this -annotation essentially tells the analyzer to treat the method as if its name -begins with "alloc" or "new" or contains the word -"copy".</p> - -<p><b>Placing on C functions</b>: For C functions returning Cocoa objects, the -analyzer typically does not make any assumptions about whether or not the object -is returned retained. Explicitly adding the 'ns_returns_retained' attribute to C -functions allows the analyzer to perform extra checking.</p> - -<p><b>Example</b></p> - -<pre class="code_example"> -<span class="command">$ cat test.m</span> -#import <Foundation/Foundation.h> - -#ifndef __has_feature // Optional. -#define __has_feature(x) 0 // Compatibility with non-clang compilers. -#endif - -#ifndef NS_RETURNS_RETAINED -#if __has_feature(attribute_ns_returns_retained) -<span class="code_highlight">#define NS_RETURNS_RETAINED __attribute__((ns_returns_retained))</span> -#else -#define NS_RETURNS_RETAINED -#endif -#endif - -@interface MyClass : NSObject {} -- (NSString*) returnsRetained <span class="code_highlight">NS_RETURNS_RETAINED</span>; -- (NSString*) alsoReturnsRetained; -@end - -@implementation MyClass -- (NSString*) returnsRetained { - return [[NSString alloc] initWithCString:"no leak here"]; -} -- (NSString*) alsoReturnsRetained { - return [[NSString alloc] initWithCString:"flag a leak"]; -} -@end -</pre> - -<p>Running <tt>scan-build</tt> on this source file produces the following output:</p> - -<img src="images/example_ns_returns_retained.png" alt="example returns retained"> - -<h4 id="attr_ns_returns_not_retained">Attribute 'ns_returns_not_retained' -(Clang-specific)</h4> - -<p>The 'ns_returns_not_retained' attribute is the complement of '<a -href="#attr_ns_returns_retained">ns_returns_retained</a>'. Where a function or -method may appear to obey the Cocoa conventions and return a retained Cocoa -object, this attribute can be used to indicate that the object reference -returned should not be considered as an "owning" reference being -returned to the caller. The Foundation framework defines a -macro <b><tt>NS_RETURNS_NOT_RETAINED</tt></b> that is functionally equivalent to -the one shown below.</p> - -<p>Usage is identical to <a -href="#attr_ns_returns_retained">ns_returns_retained</a>. When using the -attribute, be sure to declare it within the proper macro that checks for -its availability, as it is not available in earlier versions of the analyzer:</p> - -<pre class="code_example"> -<span class="command">$ cat test.m</span> -#ifndef __has_feature // Optional. -#define __has_feature(x) 0 // Compatibility with non-clang compilers. -#endif - -#ifndef NS_RETURNS_NOT_RETAINED -#if __has_feature(attribute_ns_returns_not_retained) -<span class="code_highlight">#define NS_RETURNS_NOT_RETAINED __attribute__((ns_returns_not_retained))</span> -#else -#define NS_RETURNS_NOT_RETAINED -#endif -#endif -</pre> - -<h4 id="attr_cf_returns_retained">Attribute 'cf_returns_retained' -(Clang-specific)</h4> - -<p>The GCC-style (Clang-specific) attribute 'cf_returns_retained' allows one to -annotate an Objective-C method or C function as returning a retained Core -Foundation object that the caller is responsible for releasing. The -CoreFoundation framework defines a macro <b><tt>CF_RETURNS_RETAINED</tt></b> -that is functionally equivalent to the one shown below.</p> - -<p><b>Placing on Objective-C methods</b>: With respect to Objective-C methods., -this attribute is identical in its behavior and usage to 'ns_returns_retained' -except for the distinction of returning a Core Foundation object instead of a -Cocoa object. - -This distinction is important for the following reason: -as Core Foundation is a C API, -the analyzer cannot always tell that a pointer return value refers to a -Core Foundation object. -In contrast, it is -trivial for the analyzer to recognize if a pointer refers to a Cocoa object -(given the Objective-C type system). - -<p><b>Placing on C functions</b>: When placing the attribute -'cf_returns_retained' on the declarations of C functions, the analyzer -interprets the function as:</p> - -<ol> - <li>Returning a Core Foundation Object</li> - <li>Treating the function as if it its name -contained the keywords "create" or "copy". This means the -returned object as a +1 retain count that must be released by the caller, either -by sending a <tt>release</tt> message (via toll-free bridging to an Objective-C -object pointer), or calling <tt>CFRelease</tt> or a similar function.</li> -</ol> - -<p><b>Example</b></p> - -<pre class="code_example"> -<span class="command">$ cat test.m</span> -$ cat test.m -#import <Cocoa/Cocoa.h> - -#ifndef __has_feature // Optional. -#define __has_feature(x) 0 // Compatibility with non-clang compilers. -#endif - -#ifndef CF_RETURNS_RETAINED -#if __has_feature(attribute_cf_returns_retained) -<span class="code_highlight">#define CF_RETURNS_RETAINED __attribute__((cf_returns_retained))</span> -#else -#define CF_RETURNS_RETAINED -#endif -#endif - -@interface MyClass : NSObject {} -- (NSDate*) returnsCFRetained <span class="code_highlight">CF_RETURNS_RETAINED</span>; -- (NSDate*) alsoReturnsRetained; -- (NSDate*) returnsNSRetained <span class="code_highlight">NS_RETURNS_RETAINED</span>; -@end - -<span class="code_highlight">CF_RETURNS_RETAINED</span> -CFDateRef returnsRetainedCFDate() { - return CFDateCreate(0, CFAbsoluteTimeGetCurrent()); -} - -@implementation MyClass -- (NSDate*) returnsCFRetained { - return (NSDate*) returnsRetainedCFDate(); <b><i>// No leak.</i></b> -} - -- (NSDate*) alsoReturnsRetained { - return (NSDate*) returnsRetainedCFDate(); <b><i>// Always report a leak.</i></b> -} - -- (NSDate*) returnsNSRetained { - return (NSDate*) returnsRetainedCFDate(); <b><i>// Report a leak when using GC.</i></b> -} -@end -</pre> - -<p>Running <tt>scan-build</tt> on this example produces the following output:</p> - -<img src="images/example_cf_returns_retained.png" alt="example returns retained"> - -<h4 id="attr_cf_returns_not_retained">Attribute 'cf_returns_not_retained' -(Clang-specific)</h4> - -<p>The 'cf_returns_not_retained' attribute is the complement of '<a -href="#attr_cf_returns_retained">cf_returns_retained</a>'. Where a function or -method may appear to obey the Core Foundation or Cocoa conventions and return -a retained Core Foundation object, this attribute can be used to indicate that -the object reference returned should not be considered as an -"owning" reference being returned to the caller. The -CoreFoundation framework defines a macro <b><tt>CF_RETURNS_NOT_RETAINED</tt></b> -that is functionally equivalent to the one shown below.</p> - -<p>Usage is identical to <a -href="#attr_cf_returns_retained">cf_returns_retained</a>. When using the -attribute, be sure to declare it within the proper macro that checks for -its availability, as it is not available in earlier versions of the analyzer:</p> - -<pre class="code_example"> -<span class="command">$ cat test.m</span> -#ifndef __has_feature // Optional. -#define __has_feature(x) 0 // Compatibility with non-clang compilers. -#endif - -#ifndef CF_RETURNS_NOT_RETAINED -#if __has_feature(attribute_cf_returns_not_retained) -<span class="code_highlight">#define CF_RETURNS_NOT_RETAINED __attribute__((cf_returns_not_retained))</span> -#else -#define CF_RETURNS_NOT_RETAINED -#endif -#endif -</pre> - -<h4 id="attr_ns_consumed">Attribute 'ns_consumed' -(Clang-specific)</h4> - -<p>The 'ns_consumed' attribute can be placed on a specific parameter in either -the declaration of a function or an Objective-C method. It indicates to the -static analyzer that a <tt>release</tt> message is implicitly sent to the -parameter upon completion of the call to the given function or method. The -Foundation framework defines a macro <b><tt>NS_RELEASES_ARGUMENT</tt></b> that -is functionally equivalent to the <tt>NS_CONSUMED</tt> macro shown below.</p> - -<p><b>Example</b></p> - -<pre class="code_example"> -<span class="command">$ cat test.m</span> -#ifndef __has_feature // Optional. -#define __has_feature(x) 0 // Compatibility with non-clang compilers. -#endif - -#ifndef NS_CONSUMED -#if __has_feature(attribute_ns_consumed) -<span class="code_highlight">#define NS_CONSUMED __attribute__((ns_consumed))</span> -#else -#define NS_CONSUMED -#endif -#endif - -void consume_ns(id <span class="code_highlight">NS_CONSUMED</span> x); - -void test() { - id x = [[NSObject alloc] init]; - consume_ns(x); <b><i>// No leak!</i></b> -} - -@interface Foo : NSObject -+ (void) releaseArg:(id) <span class="code_highlight">NS_CONSUMED</span> x; -+ (void) releaseSecondArg:(id)x second:(id) <span class="code_highlight">NS_CONSUMED</span> y; -@end - -void test_method() { - id x = [[NSObject alloc] init]; - [Foo releaseArg:x]; <b><i>// No leak!</i></b> -} - -void test_method2() { - id a = [[NSObject alloc] init]; - id b = [[NSObject alloc] init]; - [Foo releaseSecondArg:a second:b]; <b><i>// 'a' is leaked, but 'b' is released.</i></b> -} -</pre> - -<h4 id="attr_cf_consumed">Attribute 'cf_consumed' -(Clang-specific)</h4> - -<p>The 'cf_consumed' attribute is practically identical to <a -href="#attr_ns_consumed">ns_consumed</a>. The attribute can be placed on a -specific parameter in either the declaration of a function or an Objective-C -method. It indicates to the static analyzer that the object reference is -implicitly passed to a call to <tt>CFRelease</tt> upon completion of the call -to the given function or method. The CoreFoundation framework defines a macro -<b><tt>CF_RELEASES_ARGUMENT</tt></b> that is functionally equivalent to the -<tt>CF_CONSUMED</tt> macro shown below.</p> - -<p>Operationally this attribute is nearly identical to 'ns_consumed'.</p> - -<p><b>Example</b></p> - -<pre class="code_example"> -<span class="command">$ cat test.m</span> -#ifndef __has_feature // Optional. -#define __has_feature(x) 0 // Compatibility with non-clang compilers. -#endif - -#ifndef CF_CONSUMED -#if __has_feature(attribute_cf_consumed) -<span class="code_highlight">#define CF_CONSUMED __attribute__((cf_consumed))</span> -#else -#define CF_CONSUMED -#endif -#endif - -void consume_cf(id <span class="code_highlight">CF_CONSUMED</span> x); -void consume_CFDate(CFDateRef <span class="code_highlight">CF_CONSUMED</span> x); - -void test() { - id x = [[NSObject alloc] init]; - consume_cf(x); <b><i>// No leak!</i></b> -} - -void test2() { - CFDateRef date = CFDateCreate(0, CFAbsoluteTimeGetCurrent()); - consume_CFDate(date); <b><i>// No leak, including under GC!</i></b> - -} - -@interface Foo : NSObject -+ (void) releaseArg:(CFDateRef) <span class="code_highlight">CF_CONSUMED</span> x; -@end - -void test_method() { - CFDateRef date = CFDateCreate(0, CFAbsoluteTimeGetCurrent()); - [Foo releaseArg:date]; <b><i>// No leak!</i></b> -} -</pre> - -<h4 id="attr_ns_consumes_self">Attribute 'ns_consumes_self' -(Clang-specific)</h4> - -<p>The 'ns_consumes_self' attribute can be placed only on an Objective-C method -declaration. It indicates that the receiver of the message is -"consumed" (a single reference count decremented) after the message -is sent. This matches the semantics of all "init" methods.</p> - -<p>One use of this attribute is declare your own init-like methods that do not -follow the standard Cocoa naming conventions.</p> - -<p><b>Example</b></p> - -<pre class="code_example"> -#ifndef __has_feature -#define __has_feature(x) 0 // Compatibility with non-clang compilers. -#endif - -#ifndef NS_CONSUMES_SELF -#if __has_feature((attribute_ns_consumes_self)) -<span class="code_highlight">#define NS_CONSUMES_SELF __attribute__((ns_consumes_self))</span> -#else -#define NS_CONSUMES_SELF -#endif -#endif - -@interface MyClass : NSObject -- initWith:(MyClass *)x; -- nonstandardInitWith:(MyClass *)x <span class="code_highlight">NS_CONSUMES_SELF</span> NS_RETURNS_RETAINED; -@end -</pre> - -<p>In this example, <tt>-nonstandardInitWith:</tt> has the same ownership -semantics as the init method <tt>-initWith:</tt>. The static analyzer will -observe that the method consumes the receiver, and then returns an object with -a +1 retain count.</p> - -<p>The Foundation framework defines a macro <b><tt>NS_REPLACES_RECEIVER</tt></b> -which is functionally equivalent to the combination of <tt>NS_CONSUMES_SELF</tt> -and <tt>NS_RETURNS_RETAINED</tt> shown above.</p> - -<h3 id="osobject_mem">Libkern Memory Management Annotations</h3> - -<p><a - href="https://developer.apple.com/documentation/kernel/osobject?language=objc">Libkern</a> -requires developers to inherit all heap allocated objects from <tt>OSObject</tt> -and to perform manual reference counting. -The reference counting model is very similar to MRR (manual retain-release) mode in -<a href="https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html">Objective-C</a> -or to CoreFoundation reference counting. -Freshly-allocated objects start with a reference count of 1, -and calls to <tt>retain</tt> increment it, -while calls to <tt>release</tt> decrement it. -The object is deallocated whenever its reference count reaches zero.</p> - -<p>Manually incrementing and decrementing reference counts is error-prone: -over-retains lead to leaks, and over-releases lead to uses-after-free. -The analyzer can help the programmer to check for unbalanced -retain/release calls.</p> - -<p>The reference count checking is based on the principle of -<em>locality</em>: it should be possible to establish correctness -(lack of leaks/uses after free) by looking at each function body, -and the declarations (not the definitions) of all the functions it interacts -with.</p> - -<p>In order to support such reasoning, it should be possible to <em>summarize</em> -the behavior of each function, with respect to reference count -of its returned values and attributes.</p> - -<p>By default, the following summaries are assumed:</p> -<ul> - <li>All functions starting with <tt>get</tt> or <tt>Get</tt>, - unless they are returning subclasses of <tt>OSIterator</tt>, - are assumed to be returning at +0. - That is, the caller has no reference - count <em>obligations</em> with respect to the reference count of the returned object - and should leave it untouched. - </li> - - <li> - All other functions are assumed to return at +1. - That is, the caller has an <em>obligation</em> to release such objects. - </li> - - <li> - Functions are assumed not to change the reference count of their parameters, - including the implicit <tt>this</tt> parameter. - </li> -</ul> - -<p>These summaries can be overriden with the following -<a href="https://clang.llvm.org/docs/AttributeReference.html#os-returns-not-retained">attributes</a>:</p> - -<h4 id="attr_os_returns_retained">Attribute 'os_returns_retained'</h4> - -<p>The <tt>os_returns_retained</tt> attribute (accessed through the macro <tt> -LIBKERN_RETURNS_RETAINED</tt>) plays a role identical to <a -href="#attr_ns_returns_retained">ns_returns_retained</a> for functions -returning <tt>OSObject</tt> subclasses. -The attribute indicates that it is a callers responsibility to release the -returned object. -</p> - - -<h4 id="attr_os_returns_not_retained">Attribute 'os_returns_not_retained'</h4> - -<p>The <tt>os_returns_not_retained</tt> attribute (accessed through the macro <tt> -LIBKERN_RETURNS_NOT_RETAINED</tt>) plays a role identical to <a -href="#attr_ns_returns_not_retained">ns_returns_not_retained</a> for functions -returning <tt>OSObject</tt> subclasses. -The attribute indicates that the caller should not change the retain -count of the returned object. -</p> - -<h5>Example</h5> - -<pre class="code_example"> -class MyClass { - OSObject *f; - LIBKERN_RETURNS_NOT_RETAINED OSObject *myFieldGetter(); -} - - -// Note that the annotation only has to be applied to the function declaration. -OSObject * MyClass::myFieldGetter() { - return f; -} -</pre> - -<h4 id="attr_os_consumed">Attribute 'os_consumed'</h4> - -<p>Similarly to <a href="#attr_ns_consumed">ns_consumed</a> attribute, -<tt>os_consumed</tt> (accessed through <tt>LIBKERN_CONSUMED</tt>) attribute, -applied to a parameter, -indicates that the call to the function <em>consumes</em> the parameter: -the callee should either release it or store it and release it in the destructor, -while the caller should assume one is subtracted from the reference count -after the call.</p> - -<pre class="code_example"> -IOReturn addToList(LIBKERN_CONSUMED IOPMinformee *newInformee); -</pre> - -<h4 id="attr_os_consumes_this">Attribute 'os_consumes_this'</h4> - -<p>Similarly to <a href="#attr_ns_consumes_self">ns_consumes_self</a>, -the <tt>os_consumes_self</tt> attribute indicates that the method call -<em>consumes</em> the implicit <tt>this</tt> argument: the caller -should assume one was subtracted from the reference count of the object -after the call, and the callee has on obligation to either -release the argument, or store it and eventually release it in the -destructor.</p> - -<pre class="code_example"> -void addThisToList(OSArray *givenList) LIBKERN_CONSUMES_THIS; -</pre> - -<h4 id="os_out_parameters">Out Parameters</h4> - -A function can also return an object to a caller by a means of an out parameter -(a pointer-to-OSObject-pointer is passed, and a callee writes a pointer to an -object into an argument). -Currently the analyzer does not track unannotated out -parameters by default, but with annotations we distinguish four separate cases: - -<p><b>1. Non-retained out parameters</b>, identified using - <tt>LIBKERN_RETURNS_NOT_RETAINED</tt> applied to parameters, e.g.:</p> - -<pre class="code_example"> -void getterViaOutParam(LIBKERN_RETURNS_NOT_RETAINED OSObject **obj) -</pre> - -<p>Such functions write a non-retained object into an out parameter, and the -caller has no further obligations.</p> - -<p><b>2. Retained out parameters</b>, -identified using <tt>LIBKERN_RETURNS_RETAINED</tt>:</p> -<pre class="code_example"> -void getterViaOutParam(LIBKERN_RETURNS_NOT_RETAINED OSObject **obj) -</pre> -<p> -In such cases a retained object is written into an out parameter, which the caller has then to release in order to avoid a leak. -</p> - -<p>These two cases are simple - but in practice a functions returning an out-parameter usually also return a return code, and then an out parameter may or may not be written, which conditionally depends on the exit code, e.g.:</p> - -<pre class="code_example"> -bool maybeCreateObject(LIBKERN_RETURNS_RETAINED OSObject **obj); -</pre> - -<p>For such functions, the usual semantics is that an object is written into on "success", and not written into on "failure".<p> - -<p>For <tt>LIBKERN_RETURNS_RETAINED</tt> we assume the following definition of -success:</p> - -<p>For functions returning <tt>OSReturn</tt> or <tt>IOReturn</tt> -(any typedef to <tt>kern_return_t</tt>) success is defined as having an output of zero (<tt>kIOReturnSuccess</tt> is zero). -For all others, success is non-zero (e.g. non-nullptr for pointers)</p> - -<p><b>3. Retained out parameters on zero return</b> -The annotation <tt>LIBKERN_RETURNS_RETAINED_ON_ZERO</tt> states -that a retained object is written into if and only if the function returns a zero value:</p> - -<pre class="code_example"> -bool OSUnserializeXML(void *data, LIBKERN_RETURNS_RETAINED_ON_ZERO OSString **errString); -</pre> - -<p>Then the caller has to release an object if the function has returned zero.</p> - -<p><b>4. Retained out parameters on non-zero return</b> -Similarly, <tt>LIBKERN_RETURNS_RETAINED_ON_NONZERO</tt> specifies that a -retained object is written into the parameter if and only if the function has -returned a non-zero value.</p> - -<p>Note that for non-retained out parameters conditionals do not matter, as the -caller has no obligations regardless of whether an object is written into or -not.</p> - -<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --> -<h2 id="custom_assertions">Custom Assertion Handlers</h2> -<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --> - -<p>The analyzer exploits code assertions by pruning off paths where the -assertion condition is false. The idea is capture any program invariants -specified in the assertion that the developer may know but is not immediately -apparent in the code itself. In this way assertions make implicit assumptions -explicit in the code, which not only makes the analyzer more accurate when -finding bugs, but can help others better able to understand your code as well. -It can also help remove certain kinds of analyzer false positives by pruning off -false paths.</p> - -<p>In order to exploit assertions, however, the analyzer must understand when it -encounters an "assertion handler." Typically assertions are -implemented with a macro, with the macro performing a check for the assertion -condition and, when the check fails, calling an assertion handler. For example, consider the following code -fragment:</p> - -<pre class="code_example"> -void foo(int *p) { - assert(p != NULL); -} -</pre> - -<p>When this code is preprocessed on Mac OS X it expands to the following:</p> - -<pre class="code_example"> -void foo(int *p) { - (__builtin_expect(!(p != NULL), 0) ? __assert_rtn(__func__, "t.c", 4, "p != NULL") : (void)0); -} -</pre> - -<p>In this example, the assertion handler is <tt>__assert_rtn</tt>. When called, -most assertion handlers typically print an error and terminate the program. The -analyzer can exploit such semantics by ending the analysis of a path once it -hits a call to an assertion handler.</p> - -<p>The trick, however, is that the analyzer needs to know that a called function -is an assertion handler; otherwise the analyzer might assume the function call -returns and it will continue analyzing the path where the assertion condition -failed. This can lead to false positives, as the assertion condition usually -implies a safety condition (e.g., a pointer is not null) prior to performing -some action that depends on that condition (e.g., dereferencing a pointer).</p> - -<p>The analyzer knows about several well-known assertion handlers, but can -automatically infer if a function should be treated as an assertion handler if -it is annotated with the 'noreturn' attribute or the (Clang-specific) -'analyzer_noreturn' attribute. Note that, currently, clang does not support -these attributes on Objective-C methods and C++ methods.</p> - -<h4 id="attr_noreturn">Attribute 'noreturn'</h4> - -<p>The 'noreturn' attribute is a GCC-attribute that can be placed on the -declarations of functions. It means exactly what its name implies: a function -with a 'noreturn' attribute should never return.</p> - -<p>Specific details of the syntax of using the 'noreturn' attribute can be found -in <a -href="https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-noreturn-function-attribute">GCC's -documentation</a>.</p> - -<p>Not only does the analyzer exploit this information when pruning false paths, -but the compiler also takes it seriously and will generate diff erent code (and -possibly better optimized) under the assumption that the function does not -return.</p> - -<p><b>Example</b></p> - -<p>On Mac OS X, the function prototype for <tt>__assert_rtn</tt> (declared in -<tt>assert.h</tt>) is specifically annotated with the 'noreturn' attribute:</p> - -<pre class="code_example"> -void __assert_rtn(const char *, const char *, int, const char *) <span class="code_highlight">__attribute__((__noreturn__))</span>; -</pre> - -<h4 id="attr_analyzer_noreturn">Attribute 'analyzer_noreturn' (Clang-specific)</h4> - -<p>The Clang-specific 'analyzer_noreturn' attribute is almost identical to -'noreturn' except that it is ignored by the compiler for the purposes of code -generation.</p> - -<p>This attribute is useful for annotating assertion handlers that actually -<em>can</em> return, but for the purpose of using the analyzer we want to -pretend that such functions do not return.</p> - -<p>Because this attribute is Clang-specific, its use should be conditioned with -the use of preprocessor macros.</p> - -<p><b>Example</b> - -<pre class="code_example"> -#ifndef CLANG_ANALYZER_NORETURN -#if __has_feature(attribute_analyzer_noreturn) -<span class="code_highlight">#define CLANG_ANALYZER_NORETURN __attribute__((analyzer_noreturn))</span> -#else -#define CLANG_ANALYZER_NORETURN -#endif -#endif - -void my_assert_rtn(const char *, const char *, int, const char *) <span class="code_highlight">CLANG_ANALYZER_NORETURN</span>; -</pre> - -</div> -</div> +</div> <!-- content --> +</div> <!-- page --> </body> </html> _______________________________________________ cfe-commits mailing list cfe-commits@lists.llvm.org https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits