Author: Fraser Cormack Date: 2024-11-04T11:55:42Z New Revision: b4ef43fc75dfeea76d4d968553858b2820420e58
URL: https://github.com/llvm/llvm-project/commit/b4ef43fc75dfeea76d4d968553858b2820420e58 DIFF: https://github.com/llvm/llvm-project/commit/b4ef43fc75dfeea76d4d968553858b2820420e58.diff LOG: [libclc] Format clc_fma.cl. NFC Added: Modified: libclc/generic/lib/math/clc_fma.cl Removed: ################################################################################ diff --git a/libclc/generic/lib/math/clc_fma.cl b/libclc/generic/lib/math/clc_fma.cl index dee90e999c3983..34355a3b3c0275 100644 --- a/libclc/generic/lib/math/clc_fma.cl +++ b/libclc/generic/lib/math/clc_fma.cl @@ -22,137 +22,141 @@ #include <clc/clc.h> +#include "../clcmacro.h" #include "config.h" #include "math.h" -#include "../clcmacro.h" struct fp { - ulong mantissa; - int exponent; - uint sign; + ulong mantissa; + int exponent; + uint sign; }; -_CLC_DEF _CLC_OVERLOAD float __clc_sw_fma(float a, float b, float c) -{ - /* special cases */ - if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b)) - return mad(a, b, c); +_CLC_DEF _CLC_OVERLOAD float __clc_sw_fma(float a, float b, float c) { + /* special cases */ + if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b)) + return mad(a, b, c); - /* If only c is inf, and both a,b are regular numbers, the result is c*/ - if (isinf(c)) - return c; + /* If only c is inf, and both a,b are regular numbers, the result is c*/ + if (isinf(c)) + return c; - a = __clc_flush_denormal_if_not_supported(a); - b = __clc_flush_denormal_if_not_supported(b); - c = __clc_flush_denormal_if_not_supported(c); + a = __clc_flush_denormal_if_not_supported(a); + b = __clc_flush_denormal_if_not_supported(b); + c = __clc_flush_denormal_if_not_supported(c); - if (c == 0) - return a * b; + if (c == 0) + return a * b; - struct fp st_a, st_b, st_c; + struct fp st_a, st_b, st_c; - st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127; - st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127; - st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127; + st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127; + st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127; + st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127; - st_a.mantissa = a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000; - st_b.mantissa = b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000; - st_c.mantissa = c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000; + st_a.mantissa = a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000; + st_b.mantissa = b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000; + st_c.mantissa = c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000; - st_a.sign = as_uint(a) & 0x80000000; - st_b.sign = as_uint(b) & 0x80000000; - st_c.sign = as_uint(c) & 0x80000000; + st_a.sign = as_uint(a) & 0x80000000; + st_b.sign = as_uint(b) & 0x80000000; + st_c.sign = as_uint(c) & 0x80000000; - // Multiplication. - // Move the product to the highest bits to maximize precision - // mantissa is 24 bits => product is 48 bits, 2bits non-fraction. - // Add one bit for future addition overflow, - // add another bit to detect subtraction underflow - struct fp st_mul; - st_mul.sign = st_a.sign ^ st_b.sign; - st_mul.mantissa = (st_a.mantissa * st_b.mantissa) << 14ul; - st_mul.exponent = st_mul.mantissa ? st_a.exponent + st_b.exponent : 0; + // Multiplication. + // Move the product to the highest bits to maximize precision + // mantissa is 24 bits => product is 48 bits, 2bits non-fraction. + // Add one bit for future addition overflow, + // add another bit to detect subtraction underflow + struct fp st_mul; + st_mul.sign = st_a.sign ^ st_b.sign; + st_mul.mantissa = (st_a.mantissa * st_b.mantissa) << 14ul; + st_mul.exponent = st_mul.mantissa ? st_a.exponent + st_b.exponent : 0; - // FIXME: Detecting a == 0 || b == 0 above crashed GCN isel - if (st_mul.exponent == 0 && st_mul.mantissa == 0) - return c; + // FIXME: Detecting a == 0 || b == 0 above crashed GCN isel + if (st_mul.exponent == 0 && st_mul.mantissa == 0) + return c; // Mantissa is 23 fractional bits, shift it the same way as product mantissa #define C_ADJUST 37ul - // both exponents are bias adjusted - int exp_ diff = st_mul.exponent - st_c.exponent; - - st_c.mantissa <<= C_ADJUST; - ulong cutoff_bits = 0; - ulong cutoff_mask = (1ul << abs(exp_ diff )) - 1ul; - if (exp_ diff > 0) { - cutoff_bits = exp_ diff >= 64 ? st_c.mantissa : (st_c.mantissa & cutoff_mask); - st_c.mantissa = exp_ diff >= 64 ? 0 : (st_c.mantissa >> exp_ diff ); - } else { - cutoff_bits = -exp_ diff >= 64 ? st_mul.mantissa : (st_mul.mantissa & cutoff_mask); - st_mul.mantissa = -exp_ diff >= 64 ? 0 : (st_mul.mantissa >> -exp_ diff ); - } - - struct fp st_fma; - st_fma.sign = st_mul.sign; - st_fma.exponent = max(st_mul.exponent, st_c.exponent); - if (st_c.sign == st_mul.sign) { - st_fma.mantissa = st_mul.mantissa + st_c.mantissa; - } else { - // cutoff bits borrow one - st_fma.mantissa = st_mul.mantissa - st_c.mantissa - (cutoff_bits && (st_mul.exponent > st_c.exponent) ? 1 : 0); - } - - // underflow: st_c.sign != st_mul.sign, and magnitude switches the sign - if (st_fma.mantissa > LONG_MAX) { - st_fma.mantissa = 0 - st_fma.mantissa; - st_fma.sign = st_mul.sign ^ 0x80000000; - } - - // detect overflow/underflow - int overflow_bits = 3 - clz(st_fma.mantissa); - - // adjust exponent - st_fma.exponent += overflow_bits; - - // handle underflow - if (overflow_bits < 0) { - st_fma.mantissa <<= -overflow_bits; - overflow_bits = 0; - } - - // rounding - ulong trunc_mask = (1ul << (C_ADJUST + overflow_bits)) - 1; - ulong trunc_bits = (st_fma.mantissa & trunc_mask) | (cutoff_bits != 0); - ulong last_bit = st_fma.mantissa & (1ul << (C_ADJUST + overflow_bits)); - ulong grs_bits = (0x4ul << (C_ADJUST - 3 + overflow_bits)); - - // round to nearest even - if ((trunc_bits > grs_bits) || - (trunc_bits == grs_bits && last_bit != 0)) - st_fma.mantissa += (1ul << (C_ADJUST + overflow_bits)); - - // Shift mantissa back to bit 23 - st_fma.mantissa = (st_fma.mantissa >> (C_ADJUST + overflow_bits)); - - // Detect rounding overflow - if (st_fma.mantissa > 0xffffff) { - ++st_fma.exponent; - st_fma.mantissa >>= 1; - } - - if (st_fma.mantissa == 0) - return .0f; - - // Flating point range limit - if (st_fma.exponent > 127) - return as_float(as_uint(INFINITY) | st_fma.sign); - - // Flush denormals - if (st_fma.exponent <= -127) - return as_float(st_fma.sign); - - return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) | ((uint)st_fma.mantissa & 0x7fffff)); + // both exponents are bias adjusted + int exp_ diff = st_mul.exponent - st_c.exponent; + + st_c.mantissa <<= C_ADJUST; + ulong cutoff_bits = 0; + ulong cutoff_mask = (1ul << abs(exp_ diff )) - 1ul; + if (exp_ diff > 0) { + cutoff_bits = + exp_ diff >= 64 ? st_c.mantissa : (st_c.mantissa & cutoff_mask); + st_c.mantissa = exp_ diff >= 64 ? 0 : (st_c.mantissa >> exp_ diff ); + } else { + cutoff_bits = + -exp_ diff >= 64 ? st_mul.mantissa : (st_mul.mantissa & cutoff_mask); + st_mul.mantissa = -exp_ diff >= 64 ? 0 : (st_mul.mantissa >> -exp_ diff ); + } + + struct fp st_fma; + st_fma.sign = st_mul.sign; + st_fma.exponent = max(st_mul.exponent, st_c.exponent); + if (st_c.sign == st_mul.sign) { + st_fma.mantissa = st_mul.mantissa + st_c.mantissa; + } else { + // cutoff bits borrow one + st_fma.mantissa = + st_mul.mantissa - st_c.mantissa - + (cutoff_bits && (st_mul.exponent > st_c.exponent) ? 1 : 0); + } + + // underflow: st_c.sign != st_mul.sign, and magnitude switches the sign + if (st_fma.mantissa > LONG_MAX) { + st_fma.mantissa = 0 - st_fma.mantissa; + st_fma.sign = st_mul.sign ^ 0x80000000; + } + + // detect overflow/underflow + int overflow_bits = 3 - clz(st_fma.mantissa); + + // adjust exponent + st_fma.exponent += overflow_bits; + + // handle underflow + if (overflow_bits < 0) { + st_fma.mantissa <<= -overflow_bits; + overflow_bits = 0; + } + + // rounding + ulong trunc_mask = (1ul << (C_ADJUST + overflow_bits)) - 1; + ulong trunc_bits = (st_fma.mantissa & trunc_mask) | (cutoff_bits != 0); + ulong last_bit = st_fma.mantissa & (1ul << (C_ADJUST + overflow_bits)); + ulong grs_bits = (0x4ul << (C_ADJUST - 3 + overflow_bits)); + + // round to nearest even + if ((trunc_bits > grs_bits) || (trunc_bits == grs_bits && last_bit != 0)) + st_fma.mantissa += (1ul << (C_ADJUST + overflow_bits)); + + // Shift mantissa back to bit 23 + st_fma.mantissa = (st_fma.mantissa >> (C_ADJUST + overflow_bits)); + + // Detect rounding overflow + if (st_fma.mantissa > 0xffffff) { + ++st_fma.exponent; + st_fma.mantissa >>= 1; + } + + if (st_fma.mantissa == 0) + return .0f; + + // Flating point range limit + if (st_fma.exponent > 127) + return as_float(as_uint(INFINITY) | st_fma.sign); + + // Flush denormals + if (st_fma.exponent <= -127) + return as_float(st_fma.sign); + + return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) | + ((uint)st_fma.mantissa & 0x7fffff)); } -_CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_sw_fma, float, float, float) +_CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_sw_fma, float, + float, float) _______________________________________________ cfe-commits mailing list cfe-commits@lists.llvm.org https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits