Not sure if this is helpful Phil, but SCALEIT output includes various definitions taken from the Willis and Prior book.

But then there is the problem of converting the amplitude B factors to real space..
I attach my anisotropy notes..

It doesnt address the ? of sensible conventions!!

E
On 10/12/2011 02:55 PM, Phil Evans wrote:
I've been struggling a bit to understand the definition of B-factors, 
particularly anisotropic Bs, and I think I've finally more-or-less got my head 
around the various definitions of B, U, beta etc, but one thing puzzles me.

It seems to me that the natural measure of length in reciprocal space is d* = 
1/d = 2 sin theta/lambda

but the "conventional" term for B-factor in the structure factor expression is 
exp(-B s^2) where s = sin theta/lambda = d*/2 ie exp(-B (d*/2)^2)

Why not exp (-B' d*^2) which would seem more sensible? (B' = B/4) Why the 
factor of 4?

Or should we just get used to U instead?

My guess is that it is a historical accident (or relic), ie that is the 
definition because that's the way it is

Does anyone understand where this comes from?

Phil

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Scaleit:
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Anisotropic temperature factor (REFINE ANISOTROPIC) (default)

       C * exp(-(h**2 B11 + k**2 B22 + l**2 B33 + 
                      2hk B12 + 2hl  B13  +  2kl B23))

 T he anisotropic scale is applied to the derivative F as
 (derivative scale)* exp( - (B11*h**2 + B22*k**2 + B33*l**2 +  2*(B12*h*k + 
B13*h*l + B23*k*l) )  )



           An equivalent  form of the anisotropic temperature factor is where 
beta11 = B11/(a*)**2  etc
 exp(-0.25(  h**2 * (a*)**2 * beta11 + k**2 * (b*)**2 * beta22 + l**2 * (c*)**2 
* beta33 
           + 2*k*l*(b*)*(c*)*beta23 + 2*l*h*(c*)*(a*) *beta31 + 2*h*k*(a*)*(b*) 
*beta12))


 (This means the Uij terms of an anisotropic temperature  factor is equal to 
betaij/(8*pi**2.)

 For derivative :  1
 beta matrix - array elements beta11 beta12 beta13
                              beta21 beta22 beta23,
                              beta31 beta32 beta33

                 -2.6094        0.0000        0.0000
                  0.0000       -2.6094        0.0000
                  0.0000        0.0000       -0.9378



+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  Note: REFMAC5 outputs betaij/4 


    The isotropic equivalent is ::
  exp(-B (sin**2(theta)/lamda**2) )  =  

 exp(-0.25( h**2 * (a*)**2 * B       + k**2 * (b*)**2 * B     +  l**2 * (c*)**2 
* B 
         + 2*k*l*(b*)*(c*)*cosAS*B  +  2*l*h*(c*)*(a*)*cosBS*B  + 
2*h*k*(a*)*(b*)*cosGS*B))


+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
REFMAC code:
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
              S1  = FLOAT(IHH(1))*RCELL(1)
              S2  = FLOAT(IHH(2))*RCELL(2)
              S3  = FLOAT(IHH(3))*RCELL(3)
              S11 = S1*S1
              S22 = S2*S2
              S33 = S3*S3
              S12 = 2.0*S1*S2
              S13 = 2.0*S1*S3
              S23 = 2.0*S2*S3
              SBS = B_LS_ANISO_OVER(1)*S11 + B_LS_ANISO_OVER(2)*S22 +
     &              B_LS_ANISO_OVER(3)*S33 + B_LS_ANISO_OVER(4)*S12 +
     &              B_LS_ANISO_OVER(5)*S13 + B_LS_ANISO_OVER(6)*S23

               EXPAN = EXP(-SBS)


+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
>From RWBROOK and SHELXL
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C
C  PDB files contain anisotropic temperature factors as orthogonal Uo_ijs 
multiplied by 10**4.
C  The order is: Uo11 Uo22 Uo33 Uo12 Uo13 Uo23
C  
C  Shelx defines Ufn_ij to calculate temperature factor as:
C T(aniso_Ufn) = exp (-2PI**2 ( (h*ast)**2 Ufn_11 + (k*bst)**2 Ufn_22 +  
(l*cst)**2 Ufn_33 
C                            + 2hk*ast*bst*Ufn_12 + 2hl*ast*bst*Ufn_13+ 
2kl*bst*cst*Ufn_23)
C
C   Note:   Uo_ji == Uo_ij and  Uf_ji == Uf_ij.
C
C  10**4*[Uo_ij] listed on ANISOU card satisfy  the relationship:
C  [Uo_ij] =   [RFu]-1 [Ufn_ij] {[RFu]-1}T   
C  [Ufn_ij] =   [RFu] [Uo_ij] {[RFu]}T  
C        where [Rfu] is the normalised [Rf] matrix read derived from the SCALEi 
cards.

   ie Rf11 Rf12 Rf13     =  SCALE1(1)   SCALE1(2) SCALE1(3)
      Rf21 Rf22 Rf23        SCALE2(1)   SCALE2(2) SCALE2(3)
      Rf31 Rf32 Rf33        SCALE3(1)   SCALE3(2) SCALE3(3)

and   Rfu11 Rf12 Rfu13      = Rf11/FAC1 Rf12/FAC1  Rf13/FAC1 
      where FAC1 = SQRT(Rf11**2 +Rf12**2 +Rf13**2) etc.
For conventional SCALEi  FAC1 = a*, etc  but I am not sure if it is always 
true..

If it is and you convert
[Uf_ij] =   [RF] [Uo_ij] {[RF]}T  where [Rf] is the SCALEi matrix without 
normalisation
then
 T(aniso_Uf) = exp (-2PI**2 ( (h)**2 Uf_11 + (k)**2 Uf_22 +(l)**2 Uf_33  +      
                
                         2hk*Uf_12 +..)


C
C Biso     = 8*PI**2 (Uo_11 + Uo_22 + Uo_33) / 3.0
C
C   [Uf(symm_j)] = [Symm_j] [Uf] [Symm_j]T
C


Do you want structure factor equations in reciprocl space with anisotropic B 
(or U values) values? Then no questions marks there.
For scaling You are right.  You just calculate structure factors as you would 
do normally with formfactors also of course and then apply
contribution of anistropic scale factor. I.e.

F_scaled = k exp(-SBS) F_unscaled

F_uscale = sum_overatoms  f_iatom exp(-2pi i (h xf + k yf + l zf)

Garib
========================================================================
Structure factor for atoms with anisotropic U values 


F(hkl) = sum_overatom f_atom(hkl) T(U_atom,hkl) exp(-2pi i (h xf + k yf + z yf)


T(U_atom,hkl) = exp(-(U11 h2 + U22 k2 + U33 l2 + 2 U12 hk + 2 U13 hl + 2 U23 
kl)) = exp(-(hkl) U hkl^T)



hkl is a row vector. If you write it as a column vector then transpose should 
be on the right side.
There might be constant or so somewhere there.



PDB definition of ANISOU record
ANISOU

Overview

The ANISOU records present the anisotropic temperature factors.

Record Format

COLUMNS        DATA TYPE       FIELD         DEFINITION                  
----------------------------------------------------------------------
 1 -  6        Record name     "ANISOU"                                  
 7 - 11        Integer         serial        Atom serial number.         
13 - 16        Atom            name          Atom name.                  
17             Character       altLoc        Alternate location          
18 - 20        Residue name    resName       Residue name.               
22             Character       chainID       Chain identifier.           
23 - 26        Integer         resSeq        Residue sequence number.    
27             AChar           iCode         Insertion code.             
29 - 35        Integer         u[0][0]       U(1,1)                
36 - 42        Integer         u[1][1]       U(2,2)                
43 - 49        Integer         u[2][2]       U(3,3)                
50 - 56        Integer         u[0][1]       U(1,2)                
57 - 63        Integer         u[0][2]       U(1,3)                
64 - 70        Integer         u[1][2]       U(2,3)                
73 - 76        LString(4)      segID         Segment identifier, left-justified.
77 - 78        LString(2)      element       Element symbol, right-justified.
79 - 80        LString(2)      charge        Charge on the atom.       

Details

* Columns 7 - 27 are identical to the corresponding ATOM/HETATM record.

* The anisotropic temperature factors (columns 29 - 70) are scaled by a factor 
of 10**4 (Angstroms**2) and are presented as integers.
* The anisotropic temperature factors are stored in the same coordinate frame 
as the atomic coordinate records.
* ANISOU values are listed only if they have been provided by the depositor.


Examples : 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1) P212121
 34.44   48.95   72.62   90.00   90.00   90.00

Refmac: 
Overall               : scale =    0.276, B  = -34.671
Partial structure    1: scale =    0.928, B  =  25.925
Overall anisotropic scale factors
   B11 =  0.95 B22 = -0.40 B33 = -0.55 B12 =  0.00 B13 =  0.00 B23 =  0.00
-----------------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SFCHECK
Anisotropic distribution of Structure Factors:
  Ratio of Eigen values :  1.0000  0.7735  0.7615
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Phaser: 
  Principal components of anisotropic part of B affecting observed amplitudes:
     eigenB (A^2)     direction cosines (orthogonal coordinates)
         6.392              1.0000   0.0000   0.0000
        -3.043             -0.0000   1.0000  -0.0000
        -3.349             -0.0000   0.0000   1.0000
   Anisotropic deltaB (i.e. range of principal components):   9.741

--------------
ABSOLUTE SCALE
--------------

   Scale factor to put input Fs on absolute scale
   Wilson Scale:    2.16908
   Wilson B-factor: 26.499

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Ctruncate Anisotropic scaling:

Anisotropic scaling (orthogonal coords):

| -0.1543   0.0000   0.0000 |
|  0.0000   0.0718   0.0000 |
|  0.0000   0.0000   0.0824 |

Anisotropic U scaling (fractional coords):

|  -1.300e-04   8.387e-22   5.753e-21 |
|   8.387e-22   2.998e-05  -1.601e-21 |
|   5.753e-21  -1.601e-21   1.563e-05 |

Anisotropic B scaling (fractional coords):

|  -1.027e-02   6.622e-20   4.542e-19 |
|   6.622e-20   2.367e-03  -1.264e-19 |
|   4.542e-19  -1.264e-19   1.234e-03 |


Minimum resolution =  26.263 A
Maximum resolution =   2.013 A



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
thii_pk example P3221
Cell:  81.40  81.40 140.47  90.00  90.00 120.00
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Refmac:

Overall               : scale =    0.674, B  =   2.478
Partial structure    1: scale =    0.253, B  =  36.212
Overall anisotropic scale factors
   B11 =  1.74 B22 =  1.74 B33 = -2.61 B12 =  0.87 B13 =  0.00 B23 =  0.00
-----------------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
SFCHECK
Ratio of Eigen values :  1.0000  1.0000  0.6070

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Phaser: 

  Principal components of anisotropic part of B affecting observed amplitudes:
     eigenB (A^2)     direction cosines (orthogonal coordinates)
         8.591              0.8023  -0.5969   0.0000
         8.591              0.5969   0.8023  -0.0000
       -17.182             -0.0000   0.0000   1.0000
   Anisotropic deltaB (i.e. range of principal components):  25.773

--------------
ABSOLUTE SCALE
--------------

   Scale factor to put input Fs on absolute scale
   Wilson Scale:    1.32506
   Wilson B-factor: 66.4817

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Ctruncate ANISOTROPY CORRECTION:

ANISOTROPY CORRECTION:

Anisotropic scaling (orthogonal coords):

| -0.2516  -0.0000  -0.0000 |
| -0.0000  -0.2516   0.0000 |
| -0.0000   0.0000   0.5032 |

Anisotropic U scaling (fractional coords):

|  -5.063e-05  -2.532e-05  -2.288e-20 |
|  -2.532e-05  -5.063e-05  -1.336e-21 |
|  -2.288e-20  -1.336e-21   2.550e-05 |

Anisotropic B scaling (fractional coords):

|  -3.998e-03  -1.999e-03  -1.807e-18 |
|  -1.999e-03  -3.998e-03  -1.055e-19 |
|  -1.807e-18  -1.055e-19   2.014e-03 |


Minimum resolution =  28.161 A
Maximum resolution =   3.000 A


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3) am782.mtz P1
P1 Cell: 51.312    62.722    66.795    77.082    81.135    89.685
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
REFMAC
-----------------------------------------------------------------------------
Overall               : scale =    0.398, B  =  -6.531
Partial structure    1: scale =    0.401, B  =  -5.462
Overall anisotropic scale factors
   B11 = -0.15 B22 = -0.32 B33 =  0.78 B12 =  0.22 B13 = -0.49 B23 = -0.35
-----------------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
SFCHECK 

  Anisotropic distribution of Structure Factors:
  Ratio of Eigen values :  0.8224  0.7447  1.0000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Phaser:
   Refined Anisotropy Parameters
   -----------------------------
   Principal components of anisotropic part of B affecting observed amplitudes:
     eigenB (A^2)     direction cosines (orthogonal coordinates)
         1.173              0.1725  -0.5952   0.7849
         0.960             -0.6181   0.5550   0.5567
        -2.133              0.7670   0.5811   0.2722
   Anisotropic deltaB (i.e. range of principal components):   3.306

--------------
ABSOLUTE SCALE
--------------

   Scale factor to put input Fs on absolute scale
   Wilson Scale:    1.80035
   Wilson B-factor: 19.4283
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


Ctruncate:

ANISOTROPY CORRECTION:

Anisotropic scaling (orthogonal coords):

| -0.0043  -0.0410   0.0426 |
| -0.0410   0.1191   0.0136 |
|  0.0426   0.0136  -0.1148 |

Anisotropic U scaling (fractional coords):

|  -7.689e-06  -1.799e-05   1.842e-05 |
|  -1.799e-05   2.710e-05   9.959e-06 |
|   1.842e-05   9.959e-06  -2.776e-05 |

Anisotropic B scaling (fractional coords):

|  -6.071e-04  -1.420e-03   1.454e-03 |
|  -1.420e-03   2.140e-03   7.864e-04 |
|   1.454e-03   7.864e-04  -2.192e-03 |



B = 18.806 intercept =  6.446 siga =  0.218 sigb =  0.040
scale factor on intensity =   630.0471


results from fitting Truncate style Wilson plot
B = 22.621 intercept =  6.194 siga =  2.556 sigb =  0.437
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

You wrote:

Clipper_reci_orth    =>  hkl.coord_reci_orth(cell)

Then n = [hkl.cord_reci_orth} [U-ortho_aniso] [hkl.cord_reci_orth]transpose     
    gives temp coeff exp(0.5n)

I copied this down from you - but I realise now that I dont know  whether this 
is to be applied to intensities or amplitudes. - amplitudes I guess from the 
0.5 division..

It would also be nice to have the coefficients used in the more traditional 
U_aniso form where u_ij = betaij/8PI**2  for comparison to other software.

It would mean
1) changing signs of your n_ij
2) getting the matrix product of [reci_orth] [U-ortho_aniso] [reci_orth] 
transpose

E

         exp(-0.25(  h**2 * (a*)**2 * beta11 + k**2 * (b*)**2 * beta22 + l**2 * 
(c*)**2 * beta33
          + 2*k*l*(b*)*(c*)*beta23 + 2*l*h*(c*)*(a*) *beta31 + 2*h*k*(a*)*(b*) 
*beta12))





Reply via email to