Hi everyone, I've been looking at ways to convert an old hkl file from a CNS refinement (see details below) into an mtz file.
F2mtz in ccp4 will do this once I have told it the fortran format of the hkl file (below), and specified the data type and label for the input fields. However, I'm not sure how to define the F-MODEL and FBULK columns in terms of mtz column types. Both are two-part columns containing complex Fcalc with both amplitude and phase information. Any suggestions are most welcome! Thanks, Miriam Sharpe Dr Miriam L Sharpe Postdoctoral Fellow Department of Biochemistry University of Otago PO Box 56 710 Cumberland St Dunedin 9054 , New Zealand _______________________________________________________________ the list of columns in the hkl file: IOBS=experimental intensity from .sca file SIGI=sigma of IOBS FOBS=square root of IOBS SIGMA=sigma of FOBS TEST=Rfree flag FBULK=bulk solvent part of Fcalc PA_MODEL = HL coeff. PB_MODEL= HL coeff. PC_MODEL = HL coeff. PD_MODEL = HL coeff. FOM_MODEL =figure of merit F_MODEL = complex Fcalc, includes both amplitude and phase and the first two reflection entries: INDE 38 21 4 IOBS= 771.500 SIGI= 1140.300 FOBS= 27.780 SIGMA= 27.780 TEST= 0 FBULK= 0.333 55.023 PA_MODEL= 5.685 PB_MODEL= 5.558 PC_MODEL= 0.000 PD_MODEL= 0.000 FOM_MODEL= 0.935 F_MODEL= 135.595 44.354 INDE 38 21 3 IOBS= 18.500 SIGI= 861.100 FOBS= 4.300 SIGMA= 4.300 TEST= 0 FBULK= 0.542 82.489 PA_MODEL= 1.334 PB_MODEL= 0.159 PC_MODEL= 0.000 PD_MODEL= 0.000 FOM_MODEL= 0.555 F_MODEL= 147.826 6.802 Corresponding Fortran format (I think): (6X,3F5.0,6X,F10.0,6X,F10.0,6X,F10.0,/,25X,F10.0,6X,F10.0,7X,2F10.0,/,28X,F10.0,10X,F10.0,10X,F10.0,/,28X,F10.0,11X,F10.0,/,27X,2F10.0) MTZ Column Types: H index h,k,l F structure amplitude, F D anomalous difference Q standard deviation of anything: J,F,D or other P phase angle in degrees W weight (of some sort) A phase probability coefficients (Hendrickson/Lattmann) B BATCH number S 1/d**2 = 4 (sin theta/lambda)**2 J intensity Y M/ISYM, packed partial/reject flag and symmetry number I any other integer R any other real U partial FC (see CAD) V partial PHIC (see CAD)