Hi, I was playing with the sum of the series 1/3, 1/9, 1/27 ..etc (1÷3⋆⍳x), and found that If I'm using the rationals experimental feature (⎕ps ← 1 0), then it the following were found:
1) 1÷3⋆⍳5 1÷3 1÷9 1÷27 1÷81 1÷243 +/1÷3⋆⍳39 2026277576509488133÷4052555153018976267 +/1÷3⋆⍳40 0.5 Shouldn't the above be 1÷2? 2) creating a table for the sums of the above series until 39 n,⍪{+/1÷3⋆⍳⍵}¨n←⍳39 1 1÷3 2 4÷9 3 13÷27 4 40÷81 5 121÷243 6 364÷729 7 1093÷2187 8 3280÷6561 9 9841÷19683 10 29524÷59049 11 88573÷177147 12 265720÷531441 13 797161÷1594323 14 2391484÷4782969 15 7174453÷14348907 16 21523360÷43046721 17 64570081÷129140163 18 193710244÷387420489 19 581130733÷1162261467 20 1743392200÷3486784401 21 5230176601÷10460353203 22 15690529804÷31381059609 23 47071589413÷94143178827 24 141214768240÷282429536481 25 423644304721÷847288609443 26 1270932914164÷2541865828329 27 3812798742493÷7625597484987 28 11438396227480÷22876792454961 29 34315188682441÷68630377364883 30 102945566047324÷205891132094649 31 308836698141973÷617673396283947 32 926510094425920÷1853020188851841 33 2779530283277761÷5559060566555523 34 8338590849833284÷16677181699666569 35 25015772549499853÷50031545098999707 36 75047317648499560÷150094635296999121 37 225141952945498681÷450283905890997363 38 675425858836496044÷1350851717672992089 39 2026277576509488133÷4052555153018976267 Is fine, but after 39 (when we starting getting 0.5, the numerators of the above cases in the table have 'float' numerators, and the last 0.5 at the end of the table is float and written using the E notation. n,⍪{+/1÷3⋆⍳⍵}¨n←⍳40 1 1.0÷3 2 4.0÷9 3 13.0÷27 4 40.0÷81 5 121.0÷243 6 364.0÷729 7 1093.0÷2187 8 3280.0÷6561 9 9841.0÷19683 10 29524.0÷59049 11 88573.0÷177147 12 265720.0÷531441 13 797161.0÷1594323 14 2391484.0÷4782969 15 7174453.0÷14348907 16 21523360.0÷43046721 17 64570081.0÷129140163 18 193710244.0÷387420489 19 581130733.0÷1162261467 20 1743392200.0÷3486784401 21 5230176601.0÷10460353203 22 15690529804.0÷31381059609 23 47071589413.0÷94143178827 24 141214768240.0÷282429536481 25 423644304721.0÷847288609443 26 1270932914164.0÷2541865828329 27 3812798742493.0÷7625597484987 28 11438396227480.0÷22876792454961 29 34315188682441.0÷68630377364883 30 102945566047324.0÷205891132094649 31 308836698141973.0÷617673396283947 32 926510094425920.0÷1853020188851841 33 2779530283277761.0÷5559060566555523 34 8338590849833284.0÷16677181699666569 35 25015772549499853.0÷50031545098999707 36 75047317648499560.0÷150094635296999121 37 225141952945498681.0÷450283905890997363 38 675425858836496044.0÷1350851717672992089 39 2026277576509488133.0÷4052555153018976267 40 0.5E0 I tried to replicate it using another simpler example below: ⎕←x←0.5, 1÷1 2 3 0.5 1 1÷2 1÷3 x,x 0.5 1 1÷2 1÷3 0.5 1 1÷2 1÷3 x,[.5]x 0.5 1 1÷2 1÷3 0.5 1 1÷2 1÷3 x,⍪x 0.5E0 0.5E0 1.0E0 1.0E0 1.0÷2 1.0÷2 1.0÷3 1.0÷3 Notice that numerators are floats in the last example. Hope this helps. Regards, Ala'a