#!/bin/sh
#
Bacula interface to mtx autoloader
Adapted by Christoff Buch, OneVision Software AG, 2006-05-31
#
$Id: mtx-changer.in,v 1.21.2.7 2006/05/02 14:48:12 kerns Exp $
#
If you set in your Device resource
#
Changer Command = "path-to-this-script/mtx-changer %c %o %S %a %d"
you will have the following input to this script:
#
So Bacula will always call with all the following arguments, even though
in come cases, not all are used.
#
mtx-changer "changer-device" "command" "slot" "archive-device" "drive-index"
#

 $1

 $2
 $3
 $4
 $5
#
for example:
#
mtx-changer /dev/sg0 load 1 /dev/nst0 0 (on a Linux system)

will request to load the first cartidge into drive 0, where
the SCSI control channel is /dev/sg0, and the read/write device
is /dev/nst0.
#
If you need to an offline, refer to the drive as $4
e.g. mt -f $4 offline
#
Many changers need an offline after (Sorry, not before?) the unload. Also many
changers need a sleep 60 after the mtx load.
#
N.B. If you change the script, take care to return either
the mtx exit code or a 0. If the script exits with a non-zero
exit code, Bacula will assume the request failed.
#

MTX=mtx

#
log whats done
#
to turn on logging, uncomment the following line
#touch /usr/local/bacula/working/mtx.log
#
dbgfile="/usr/local/bacula/working/mtx.log"
debug() {
 if test -f $dbgfile; then

echo "`date +\"%Y%m%d-%H:%M:%S\"` $*" >> $dbgfile
 fi
}

#
Create a temporary file
#
make_temp_file() {
 TMPFILE=`mktemp /usr/local/bacula/working/mtx.XXXXXXXXXX`
 if test x${TMPFILE} = x; then
 TMPFILE="/usr/local/bacula/working/mtx.$$"
 if test -f ${TMPFILE}; then

echo "Temp file security problem on: ${TMPFILE}"

exit 1
 fi
 fi
}

#
The purpose of this function to wait a maximum
time for the drive. It will
return as soon as the drive is ready, or after
waiting a maximum of 300 seconds.
Note, this is very system dependent, so if you are
not running on Linux, you will probably need to
re-write it, or at least change the grep target.
#
wait_for_drive() {
 i=0
 while [$i -le 300]; do # Wait max 300 seconds
 if mt -f $1 status | grep ONLINE >/dev/null 2>&1; then
 break
 fi
 debug "Device $1 - not ready, retrying..."
 sleep 1
 i=`expr $i + 1`
 done
}

check parameter count on commandline
#
check_parm_count() {
 pCount=$1
 pCountNeed=$2
 if test $pCount -lt $pCountNeed; then

echo "usage: mtx-changer ctl-device command [slot archive-device drive-index]"

echo "
Insufficient number of arguments arguments given."

if test $pCount -lt 2; then

 echo " Mimimum usage is first two arguments ..."

else

 echo " Command expected $pCountNeed arguments"

fi

exit 1
 fi
}

Check for special cases where only 2 arguments are needed,
all others are a minimum of 5
#
case $2 in
 list)

check_parm_count $# 2

;;
 slots)

check_parm_count $# 2

;;
 *)

check_parm_count $# 5

;;
esac

Setup arguments
ctl=$1
cmd="$2"
slot=$3
device=$4
drive=$5

debug "Parms: $ctl $cmd $slot $device $drive"

case $cmd in
 unload)
 debug "Doing mtx -f $ctl unload $slot $drive"
#
enable the following line if you need to eject the cartridge
the following two(!)lines enabled by Christoff Buch, OneVision Software AG, 2006-05-31
 mt -f $device offline
 sleep 10
 ${MTX} -f $ctl unload $slot $drive
 ;;

 load)
 debug "Doing mtx -f $ctl load $slot $drive"
 ${MTX} -f $ctl load $slot $drive
 rtn=$?
#
Increase the sleep time if you have a slow device
or remove the sleep and add the following:
the following line enabled by Christoff Buch, OneVision Software AG, 2006-05-31
 wait_for_drive $device

the following line disabled by Christoff Buch, OneVision Software AG, 2006-05-31
sleep 15
 exit $rtn
 ;;

 list)
 debug "Doing mtx -f $ctl -- to list volumes"
 make_temp_file
Enable the following if you are using barcodes and need an inventory
OneVision Software AG, Exabyte 221L tape library doesn't need this!
Exabyte 221L scans barcodes after POST. Left as is. Christoff Buch, OneVision Software AG, 2006-05-31
$(MTX) -f $ctl inventory
 ${MTX} -f $ctl status >${TMPFILE}
 rtn=$?
 cat ${TMPFILE} | grep " *Storage Element [0-9]*:.*Full" | awk "{print \$3 \$4}" | sed "s/Full *\(:VolumeTag=\)*//"
 cat ${TMPFILE} | grep "^Data Transfer Element [0-9]*:Full (Storage Element [0-9]" | awk '{printf "%s:%s\n",$7,$10}'
 rm -f ${TMPFILE} >/dev/null 2>&1
#
If you have a VXA PacketLoader and the above does not work, try
turning it off and enabling the following line.
${MTX} -f $ctl status | grep " *Storage Element [0-9]*:.*Full" | sed "s/*Storage Element //" | sed "s/Full :VolumeTag=//"
 exit $rtn
 ;;

 loaded)
 debug "Doing mtx -f $ctl $drive -- to find what is loaded"
 make_temp_file
 ${MTX} -f $ctl status >${TMPFILE}
 rtn=$?
 cat ${TMPFILE} | grep "^Data Transfer Element $drive:Full" | awk "{print \$7}"
 cat ${TMPFILE} | grep "^Data Transfer Element $drive:Empty" | awk "{print 0}"
 rm -f ${TMPFILE} >/dev/null 2>&1
 exit $rtn
 ;;

 slots)
 debug "Doing mtx -f $ctl -- to get count of slots"
 ${MTX} -f $ctl status | grep " *Storage Changer" | awk "{print \$5}"
 ;;
esac

