From: "Dr. David Alan Gilbert" <li...@treblig.org>

We start with the function 'atomctrl_calculate_voltage_evv_on_sclk'
which has been unused since 2016's commit
e805ed83ba1c ("drm/amd/powerplay: delete useless files.")

Remove it.

It was the last user of the struct ATOM_ASIC_PROFILING_INFO_V3_4
remove it.

It was also the last user of the entire fixed point maths library in
ppevvmath.h.

Remove it.

Signed-off-by: Dr. David Alan Gilbert <li...@treblig.org>
---
 drivers/gpu/drm/amd/include/atombios.h        |  72 ---
 .../drm/amd/pm/powerplay/hwmgr/ppatomctrl.c   | 428 -------------
 .../drm/amd/pm/powerplay/hwmgr/ppatomctrl.h   |   2 -
 .../drm/amd/pm/powerplay/hwmgr/ppevvmath.h    | 561 ------------------
 4 files changed, 1063 deletions(-)
 delete mode 100644 drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h

diff --git a/drivers/gpu/drm/amd/include/atombios.h 
b/drivers/gpu/drm/amd/include/atombios.h
index b78360a71bc9..e810366a3c83 100644
--- a/drivers/gpu/drm/amd/include/atombios.h
+++ b/drivers/gpu/drm/amd/include/atombios.h
@@ -5432,78 +5432,6 @@ typedef struct  _ATOM_ASIC_PROFILING_INFO_V3_3
   ULONG  ulSDCMargine;
 }ATOM_ASIC_PROFILING_INFO_V3_3;
 
-// for Fiji speed EVV algorithm
-typedef struct  _ATOM_ASIC_PROFILING_INFO_V3_4
-{
-  ATOM_COMMON_TABLE_HEADER         asHeader;
-  ULONG  ulEvvLkgFactor;
-  ULONG  ulBoardCoreTemp;
-  ULONG  ulMaxVddc;
-  ULONG  ulMinVddc;
-  ULONG  ulLoadLineSlop;
-  ULONG  ulLeakageTemp;
-  ULONG  ulLeakageVoltage;
-  EFUSE_LINEAR_FUNC_PARAM sCACm;
-  EFUSE_LINEAR_FUNC_PARAM sCACb;
-  EFUSE_LOGISTIC_FUNC_PARAM sKt_b;
-  EFUSE_LOGISTIC_FUNC_PARAM sKv_m;
-  EFUSE_LOGISTIC_FUNC_PARAM sKv_b;
-  USHORT usLkgEuseIndex;
-  UCHAR  ucLkgEfuseBitLSB;
-  UCHAR  ucLkgEfuseLength;
-  ULONG  ulLkgEncodeLn_MaxDivMin;
-  ULONG  ulLkgEncodeMax;
-  ULONG  ulLkgEncodeMin;
-  ULONG  ulEfuseLogisticAlpha;
-  USHORT usPowerDpm0;
-  USHORT usPowerDpm1;
-  USHORT usPowerDpm2;
-  USHORT usPowerDpm3;
-  USHORT usPowerDpm4;
-  USHORT usPowerDpm5;
-  USHORT usPowerDpm6;
-  USHORT usPowerDpm7;
-  ULONG  ulTdpDerateDPM0;
-  ULONG  ulTdpDerateDPM1;
-  ULONG  ulTdpDerateDPM2;
-  ULONG  ulTdpDerateDPM3;
-  ULONG  ulTdpDerateDPM4;
-  ULONG  ulTdpDerateDPM5;
-  ULONG  ulTdpDerateDPM6;
-  ULONG  ulTdpDerateDPM7;
-  EFUSE_LINEAR_FUNC_PARAM sRoFuse;
-  ULONG  ulEvvDefaultVddc;
-  ULONG  ulEvvNoCalcVddc;
-  USHORT usParamNegFlag;
-  USHORT usSpeed_Model;
-  ULONG  ulSM_A0;
-  ULONG  ulSM_A1;
-  ULONG  ulSM_A2;
-  ULONG  ulSM_A3;
-  ULONG  ulSM_A4;
-  ULONG  ulSM_A5;
-  ULONG  ulSM_A6;
-  ULONG  ulSM_A7;
-  UCHAR  ucSM_A0_sign;
-  UCHAR  ucSM_A1_sign;
-  UCHAR  ucSM_A2_sign;
-  UCHAR  ucSM_A3_sign;
-  UCHAR  ucSM_A4_sign;
-  UCHAR  ucSM_A5_sign;
-  UCHAR  ucSM_A6_sign;
-  UCHAR  ucSM_A7_sign;
-  ULONG ulMargin_RO_a;
-  ULONG ulMargin_RO_b;
-  ULONG ulMargin_RO_c;
-  ULONG ulMargin_fixed;
-  ULONG ulMargin_Fmax_mean;
-  ULONG ulMargin_plat_mean;
-  ULONG ulMargin_Fmax_sigma;
-  ULONG ulMargin_plat_sigma;
-  ULONG ulMargin_DC_sigma;
-  ULONG ulReserved[8];            // Reserved for future ASIC
-}ATOM_ASIC_PROFILING_INFO_V3_4;
-
 // for  Polaris10/Polaris11 speed EVV algorithm
 typedef struct  _ATOM_ASIC_PROFILING_INFO_V3_5
 {
diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c 
b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c
index b56298d9da98..fe24219c3bf4 100644
--- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c
+++ b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c
@@ -28,7 +28,6 @@
 #include "ppatomctrl.h"
 #include "atombios.h"
 #include "cgs_common.h"
-#include "ppevvmath.h"
 
 #define MEM_ID_MASK           0xff000000
 #define MEM_ID_SHIFT          24
@@ -677,433 +676,6 @@ bool atomctrl_get_pp_assign_pin(
        return bRet;
 }
 
-int atomctrl_calculate_voltage_evv_on_sclk(
-               struct pp_hwmgr *hwmgr,
-               uint8_t voltage_type,
-               uint32_t sclk,
-               uint16_t virtual_voltage_Id,
-               uint16_t *voltage,
-               uint16_t dpm_level,
-               bool debug)
-{
-       ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
-       struct amdgpu_device *adev = hwmgr->adev;
-       EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
-       EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
-       EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
-       EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
-       EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
-       EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
-       EFUSE_INPUT_PARAMETER sInput_FuseValues;
-       READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
-
-       uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, 
ul_Kv_m_fused, ul_Kv_b_fused;
-       fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
-       fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, 
fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, 
fMargin_DC_sigma;
-       fInt fLkg_FT, repeat;
-       fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, 
fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
-       fInt fRLL_LoadLine, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, 
fRO_DC_margin;
-       fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, 
fKt_Beta_fused, fFT_Lkg_V0NORM;
-       fInt fSclk_margin, fSclk, fEVV_V;
-       fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, 
fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
-       uint32_t ul_FT_Lkg_V0NORM;
-       fInt fLn_MaxDivMin, fMin, fAverage, fRange;
-       fInt fRoots[2];
-       fInt fStepSize = GetScaledFraction(625, 100000);
-
-       int result;
-
-       getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
-                       smu_atom_get_data_table(hwmgr->adev,
-                                       GetIndexIntoMasterTable(DATA, 
ASIC_ProfilingInfo),
-                                       NULL, NULL, NULL);
-
-       if (!getASICProfilingInfo)
-               return -1;
-
-       if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
-           (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
-            getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
-               return -1;
-
-       /*-----------------------------------------------------------
-        *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
-        *-----------------------------------------------------------
-        */
-       fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
-
-       switch (dpm_level) {
-       case 1:
-               fDerateTDP = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
-               break;
-       case 2:
-               fDerateTDP = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
-               break;
-       case 3:
-               fDerateTDP = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
-               break;
-       case 4:
-               fDerateTDP = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
-               break;
-       case 5:
-               fDerateTDP = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
-               break;
-       case 6:
-               fDerateTDP = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
-               break;
-       case 7:
-               fDerateTDP = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
-               break;
-       default:
-               pr_err("DPM Level not supported\n");
-               fDerateTDP = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
-       }
-
-       /*-------------------------
-        * DECODING FUSE VALUES
-        * ------------------------
-        */
-       /*Decode RO_Fused*/
-       sRO_fuse = getASICProfilingInfo->sRoFuse;
-
-       sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
-       sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
-       sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
-
-       sOutput_FuseValues.sEfuse = sInput_FuseValues;
-
-       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
-                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-                       (uint32_t *)&sOutput_FuseValues, 
sizeof(sOutput_FuseValues));
-
-       if (result)
-               return result;
-
-       /* Finally, the actual fuse value */
-       ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
-       fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
-       fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
-       fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, 
sRO_fuse.ucEfuseLength);
-
-       sCACm_fuse = getASICProfilingInfo->sCACm;
-
-       sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
-       sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
-       sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
-
-       sOutput_FuseValues.sEfuse = sInput_FuseValues;
-
-       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
-                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-                       (uint32_t *)&sOutput_FuseValues, 
sizeof(sOutput_FuseValues));
-
-       if (result)
-               return result;
-
-       ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
-       fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
-       fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 
1000);
-
-       fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, 
sCACm_fuse.ucEfuseLength);
-
-       sCACb_fuse = getASICProfilingInfo->sCACb;
-
-       sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
-       sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
-       sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
-       sOutput_FuseValues.sEfuse = sInput_FuseValues;
-
-       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
-                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-                       (uint32_t *)&sOutput_FuseValues, 
sizeof(sOutput_FuseValues));
-
-       if (result)
-               return result;
-
-       ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
-       fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
-       fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 
1000);
-
-       fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, 
sCACb_fuse.ucEfuseLength);
-
-       sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
-
-       sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
-       sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
-       sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
-
-       sOutput_FuseValues.sEfuse = sInput_FuseValues;
-
-       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
-                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-                       (uint32_t *)&sOutput_FuseValues, 
sizeof(sOutput_FuseValues));
-
-       if (result)
-               return result;
-
-       ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
-       fAverage = 
GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
-       fRange = 
GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
-
-       fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
-                       fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
-
-       sKv_m_fuse = getASICProfilingInfo->sKv_m;
-
-       sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
-       sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
-       sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
-
-       sOutput_FuseValues.sEfuse = sInput_FuseValues;
-
-       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
-                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-                       (uint32_t *)&sOutput_FuseValues, 
sizeof(sOutput_FuseValues));
-       if (result)
-               return result;
-
-       ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
-       fAverage = 
GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
-       fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) 
& 0x7fffffff), 1000);
-       fRange = fMultiply(fRange, ConvertToFraction(-1));
-
-       fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
-                       fAverage, fRange, sKv_m_fuse.ucEfuseLength);
-
-       sKv_b_fuse = getASICProfilingInfo->sKv_b;
-
-       sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
-       sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
-       sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
-       sOutput_FuseValues.sEfuse = sInput_FuseValues;
-
-       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
-                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-                       (uint32_t *)&sOutput_FuseValues, 
sizeof(sOutput_FuseValues));
-
-       if (result)
-               return result;
-
-       ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
-       fAverage = 
GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
-       fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 
1000);
-
-       fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
-                       fAverage, fRange, sKv_b_fuse.ucEfuseLength);
-
-       /* Decoding the Leakage - No special struct container */
-       /*
-        * usLkgEuseIndex=56
-        * ucLkgEfuseBitLSB=6
-        * ucLkgEfuseLength=10
-        * ulLkgEncodeLn_MaxDivMin=69077
-        * ulLkgEncodeMax=1000000
-        * ulLkgEncodeMin=1000
-        * ulEfuseLogisticAlpha=13
-        */
-
-       sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
-       sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
-       sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
-
-       sOutput_FuseValues.sEfuse = sInput_FuseValues;
-
-       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
-                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-                       (uint32_t *)&sOutput_FuseValues, 
sizeof(sOutput_FuseValues));
-
-       if (result)
-               return result;
-
-       ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
-       fLn_MaxDivMin = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 
10000);
-       fMin = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
-
-       fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
-                       fLn_MaxDivMin, fMin, 
getASICProfilingInfo->ucLkgEfuseLength);
-       fLkg_FT = fFT_Lkg_V0NORM;
-
-       /*-------------------------------------------
-        * PART 2 - Grabbing all required values
-        *-------------------------------------------
-        */
-       fSM_A0 = 
fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 
1000000),
-                       ConvertToFraction(uPow(-1, 
getASICProfilingInfo->ucSM_A0_sign)));
-       fSM_A1 = 
fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 
1000000),
-                       ConvertToFraction(uPow(-1, 
getASICProfilingInfo->ucSM_A1_sign)));
-       fSM_A2 = 
fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
-                       ConvertToFraction(uPow(-1, 
getASICProfilingInfo->ucSM_A2_sign)));
-       fSM_A3 = 
fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 
1000000),
-                       ConvertToFraction(uPow(-1, 
getASICProfilingInfo->ucSM_A3_sign)));
-       fSM_A4 = 
fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 
1000000),
-                       ConvertToFraction(uPow(-1, 
getASICProfilingInfo->ucSM_A4_sign)));
-       fSM_A5 = 
fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
-                       ConvertToFraction(uPow(-1, 
getASICProfilingInfo->ucSM_A5_sign)));
-       fSM_A6 = 
fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
-                       ConvertToFraction(uPow(-1, 
getASICProfilingInfo->ucSM_A6_sign)));
-       fSM_A7 = 
fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
-                       ConvertToFraction(uPow(-1, 
getASICProfilingInfo->ucSM_A7_sign)));
-
-       fMargin_RO_a = 
ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
-       fMargin_RO_b = 
ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
-       fMargin_RO_c = 
ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
-
-       fMargin_fixed = 
ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
-
-       fMargin_FMAX_mean = GetScaledFraction(
-               le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
-       fMargin_Plat_mean = GetScaledFraction(
-               le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
-       fMargin_FMAX_sigma = GetScaledFraction(
-               le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
-       fMargin_Plat_sigma = GetScaledFraction(
-               le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
-
-       fMargin_DC_sigma = GetScaledFraction(
-               le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
-       fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
-
-       fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
-       fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
-       fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
-       fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
-       fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
-
-       fSclk = GetScaledFraction(sclk, 100);
-
-       fV_max = fDivide(GetScaledFraction(
-                                le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 
1000), ConvertToFraction(4));
-       fT_prod = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
-       fLKG_Factor = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
-       fT_FT = 
GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
-       fV_FT = fDivide(GetScaledFraction(
-                               
le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), 
ConvertToFraction(4));
-       fV_min = fDivide(GetScaledFraction(
-                                le32_to_cpu(getASICProfilingInfo->ulMinVddc), 
1000), ConvertToFraction(4));
-
-       /*-----------------------
-        * PART 3
-        *-----------------------
-        */
-
-       fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
-       fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
-       fC_Term = fAdd(fMargin_RO_c,
-                       fAdd(fMultiply(fSM_A0, fLkg_FT),
-                       fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
-                       fAdd(fMultiply(fSM_A3, fSclk),
-                       fSubtract(fSM_A7, fRO_fused)))));
-
-       fVDDC_base = fSubtract(fRO_fused,
-                       fSubtract(fMargin_RO_c,
-                                       fSubtract(fSM_A3, fMultiply(fSM_A1, 
fSclk))));
-       fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), 
fSM_A2));
-
-       repeat = fSubtract(fVDDC_base,
-                       fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
-
-       fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
-                       fGetSquare(repeat)),
-                       fAdd(fMultiply(fMargin_RO_b, repeat),
-                       fMargin_RO_c));
-
-       fDC_SCLK = fSubtract(fRO_fused,
-                       fSubtract(fRO_DC_margin,
-                       fSubtract(fSM_A3,
-                       fMultiply(fSM_A2, repeat))));
-       fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
-
-       fSigma_DC = fSubtract(fSclk, fDC_SCLK);
-
-       fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
-       fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
-       fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
-       fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
-
-       fSquared_Sigma_DC = fGetSquare(fSigma_DC);
-       fSquared_Sigma_CR = fGetSquare(fSigma_CR);
-       fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
-
-       fSclk_margin = fAdd(fMicro_FMAX,
-                       fAdd(fMicro_CR,
-                       fAdd(fMargin_fixed,
-                       fSqrt(fAdd(fSquared_Sigma_FMAX,
-                       fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
-       /*
-        fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
-        fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
-        fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk 
+ fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
-        */
-
-       fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
-       fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
-       fC_Term = fAdd(fRO_DC_margin,
-                       fAdd(fMultiply(fSM_A0, fLkg_FT),
-                       fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
-                       fAdd(fSclk, fSclk_margin)),
-                       fAdd(fMultiply(fSM_A3,
-                       fAdd(fSclk, fSclk_margin)),
-                       fSubtract(fSM_A7, fRO_fused)))));
-
-       SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
-
-       if (GreaterThan(fRoots[0], fRoots[1]))
-               fEVV_V = fRoots[1];
-       else
-               fEVV_V = fRoots[0];
-
-       if (GreaterThan(fV_min, fEVV_V))
-               fEVV_V = fV_min;
-       else if (GreaterThan(fEVV_V, fV_max))
-               fEVV_V = fSubtract(fV_max, fStepSize);
-
-       fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
-
-       /*-----------------
-        * PART 4
-        *-----------------
-        */
-
-       fV_x = fV_min;
-
-       while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
-               fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
-                               fMultiply(fCACm_fused, fV_x), fCACb_fused), 
fSclk),
-                               fGetSquare(fV_x)), fDerateTDP);
-
-               fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, 
fMultiply(fLKG_Factor,
-                               
fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
-                               fT_prod), fKv_b_fused), fV_x)), fV_x)));
-               fTDP_Power_right = fMultiply(fTDP_Power_right, 
fExponential(fMultiply(
-                               fKt_Beta_fused, fT_prod)));
-               fTDP_Power_right = fDivide(fTDP_Power_right, 
fExponential(fMultiply(
-                               fAdd(fMultiply(fKv_m_fused, fT_prod), 
fKv_b_fused), fV_FT)));
-               fTDP_Power_right = fDivide(fTDP_Power_right, 
fExponential(fMultiply(
-                               fKt_Beta_fused, fT_FT)));
-
-               fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
-
-               fTDP_Current = fDivide(fTDP_Power, fV_x);
-
-               fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, 
fRLL_LoadLine),
-                               ConvertToFraction(10)));
-
-               fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
-
-               if (GreaterThan(fV_max, fV_NL) &&
-                       (GreaterThan(fV_NL, fEVV_V) ||
-                       Equal(fV_NL, fEVV_V))) {
-                       fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
-
-                       *voltage = (uint16_t)fV_NL.partial.real;
-                       break;
-               } else
-                       fV_x = fAdd(fV_x, fStepSize);
-       }
-
-       return result;
-}
-
 /**
  * atomctrl_get_voltage_evv_on_sclk: gets voltage via call to ATOM COMMAND 
table.
  * @hwmgr:              input: pointer to hwManager
diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h 
b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h
index 1f987e846628..22b0ac12df97 100644
--- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h
+++ b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h
@@ -316,8 +316,6 @@ extern int atomctrl_get_engine_pll_dividers_kong(struct 
pp_hwmgr *hwmgr,
                                                 
pp_atomctrl_clock_dividers_kong *dividers);
 extern int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
                uint16_t end_index, uint32_t *efuse);
-extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, 
uint8_t voltage_type,
-               uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, 
uint16_t dpm_level, bool debug);
 extern int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr, 
uint32_t clock_value, pp_atomctrl_clock_dividers_ai *dividers);
 extern int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t 
memory_clock,
                                                                uint8_t level);
diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h 
b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
deleted file mode 100644
index 409aeec6baa9..000000000000
--- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
+++ /dev/null
@@ -1,561 +0,0 @@
-/*
- * Copyright 2015 Advanced Micro Devices, Inc.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
- * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
- * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- * OTHER DEALINGS IN THE SOFTWARE.
- *
- */
-#include <asm/div64.h>
-
-enum ppevvmath_constants {
-       /* We multiply all original integers with 2^SHIFT_AMOUNT to get the 
fInt representation */
-       SHIFT_AMOUNT    = 16,
-
-       /* Change this value to change the number of decimal places in the 
final output - 5 is a good default */
-       PRECISION       =  5,
-
-       SHIFTED_2       = (2 << SHIFT_AMOUNT),
-
-       /* 32767 - Might change in the future */
-       MAX             = (1 << (SHIFT_AMOUNT - 1)) - 1,
-};
-
-/* 
-------------------------------------------------------------------------------
- * NEW TYPE - fINT
- * 
-------------------------------------------------------------------------------
- * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
- * fInt A;
- * A.full => The full number as it is. Generally not easy to read
- * A.partial.real => Only the integer portion
- * A.partial.decimal => Only the fractional portion
- */
-typedef union _fInt {
-    int full;
-    struct _partial {
-        unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
-        int real: 32 - SHIFT_AMOUNT;
-    } partial;
-} fInt;
-
-/* 
-------------------------------------------------------------------------------
- * Function Declarations
- *  
-------------------------------------------------------------------------------
- */
-static fInt ConvertToFraction(int);                       /* Use this to 
convert an INT to a FINT */
-static fInt Convert_ULONG_ToFraction(uint32_t);           /* Use this to 
convert an uint32_t to a FINT */
-static fInt GetScaledFraction(int, int);                  /* Use this to 
convert an INT to a FINT after scaling it by a factor */
-static int ConvertBackToInteger(fInt);                    /* Convert a FINT 
back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal 
digits) */
-
-static fInt fNegate(fInt);                                /* Returns -1 * 
input fInt value */
-static fInt fAdd (fInt, fInt);                            /* Returns the sum 
of two fInt numbers */
-static fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - 
Sometimes easier than Adding negative numbers */
-static fInt fMultiply (fInt, fInt);                       /* Returns the 
product of two fInt numbers */
-static fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
-static fInt fGetSquare(fInt);                             /* Returns the 
square of a fInt number */
-static fInt fSqrt(fInt);                                  /* Returns the 
Square Root of a fInt number */
-
-static int uAbs(int);                                     /* Returns the 
Absolute value of the Int */
-static int uPow(int base, int exponent);                  /* Returns 
base^exponent an INT */
-
-static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 
roots via the array */
-static bool Equal(fInt, fInt);                            /* Returns true if 
two fInts are equal to each other */
-static bool GreaterThan(fInt A, fInt B);                  /* Returns true if A 
> B */
-
-static fInt fExponential(fInt exponent);                  /* Can be used to 
calculate e^exponent */
-static fInt fNaturalLog(fInt value);                      /* Can be used to 
calculate ln(value) */
-
-/* Fuse decoding functions
- * 
-------------------------------------------------------------------------------------
- */
-static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, 
uint32_t bitlength);
-static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt 
f_range, uint32_t bitlength);
-static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, 
fInt f_min, uint32_t bitlength);
-
-/* Internal Support Functions - Use these ONLY for testing or adding to 
internal functions
- * 
-------------------------------------------------------------------------------------
- * Some of the following functions take two INTs as their input - This is 
unsafe for a variety of reasons.
- */
-static fInt Divide (int, int);                            /* Divide two INTs 
and return result as FINT */
-static fInt fNegate(fInt);
-
-static int uGetScaledDecimal (fInt);                      /* Internal function 
*/
-static int GetReal (fInt A);                              /* Internal function 
*/
-
-/* 
-------------------------------------------------------------------------------------
- * TROUBLESHOOTING INFORMATION
- * 
-------------------------------------------------------------------------------------
- * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers 
smaller than MAX (default: 32767)
- * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
- * 3) fMultiply - OutputOutOfRangeException:
- * 4) fGetSquare - OutputOutOfRangeException:
- * 5) fDivide - DivideByZeroException
- * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
- */
-
-/* 
-------------------------------------------------------------------------------------
- * START OF CODE
- * 
-------------------------------------------------------------------------------------
- */
-static fInt fExponential(fInt exponent)        /*Can be used to calculate 
e^exponent*/
-{
-       uint32_t i;
-       bool bNegated = false;
-
-       fInt fPositiveOne = ConvertToFraction(1);
-       fInt fZERO = ConvertToFraction(0);
-
-       fInt lower_bound = Divide(78, 10000);
-       fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
-       fInt error_term;
-
-       static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 
2231, 1178, 606, 308, 155, 78};
-       static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 
15000, 12500, 11250, 10625, 10313, 10156, 10078};
-
-       if (GreaterThan(fZERO, exponent)) {
-               exponent = fNegate(exponent);
-               bNegated = true;
-       }
-
-       while (GreaterThan(exponent, lower_bound)) {
-               for (i = 0; i < 11; i++) {
-                       if (GreaterThan(exponent, GetScaledFraction(k_array[i], 
10000))) {
-                               exponent = fSubtract(exponent, 
GetScaledFraction(k_array[i], 10000));
-                               solution = fMultiply(solution, 
GetScaledFraction(expk_array[i], 10000));
-                       }
-               }
-       }
-
-       error_term = fAdd(fPositiveOne, exponent);
-
-       solution = fMultiply(solution, error_term);
-
-       if (bNegated)
-               solution = fDivide(fPositiveOne, solution);
-
-       return solution;
-}
-
-static fInt fNaturalLog(fInt value)
-{
-       uint32_t i;
-       fInt upper_bound = Divide(8, 1000);
-       fInt fNegativeOne = ConvertToFraction(-1);
-       fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 
*/
-       fInt error_term;
-
-       static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 
12500, 11250, 10625, 10313, 10156, 10078};
-       static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 
1178, 606, 308, 155, 78};
-
-       while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
-               for (i = 0; i < 10; i++) {
-                       if (GreaterThan(value, GetScaledFraction(k_array[i], 
10000))) {
-                               value = fDivide(value, 
GetScaledFraction(k_array[i], 10000));
-                               solution = fAdd(solution, 
GetScaledFraction(logk_array[i], 10000));
-                       }
-               }
-       }
-
-       error_term = fAdd(fNegativeOne, value);
-
-       return fAdd(solution, error_term);
-}
-
-static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, 
uint32_t bitlength)
-{
-       fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
-       fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 
1);
-
-       fInt f_decoded_value;
-
-       f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
-       f_decoded_value = fMultiply(f_decoded_value, f_range);
-       f_decoded_value = fAdd(f_decoded_value, f_min);
-
-       return f_decoded_value;
-}
-
-
-static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt 
f_range, uint32_t bitlength)
-{
-       fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
-       fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 
1);
-
-       fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
-       fInt f_CONSTANT1 = ConvertToFraction(1);
-
-       fInt f_decoded_value;
-
-       f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), 
f_CONSTANT1);
-       f_decoded_value = fNaturalLog(f_decoded_value);
-       f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, 
f_CONSTANT_NEG13));
-       f_decoded_value = fAdd(f_decoded_value, f_average);
-
-       return f_decoded_value;
-}
-
-static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, 
fInt f_min, uint32_t bitlength)
-{
-       fInt fLeakage;
-       fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 
1);
-
-       fLeakage = fMultiply(ln_max_div_min, 
Convert_ULONG_ToFraction(leakageID_fuse));
-       fLeakage = fDivide(fLeakage, f_bit_max_value);
-       fLeakage = fExponential(fLeakage);
-       fLeakage = fMultiply(fLeakage, f_min);
-
-       return fLeakage;
-}
-
-static fInt ConvertToFraction(int X) /*Add all range checking here. Is it 
possible to make fInt a private declaration? */
-{
-       fInt temp;
-
-       if (X <= MAX)
-               temp.full = (X << SHIFT_AMOUNT);
-       else
-               temp.full = 0;
-
-       return temp;
-}
-
-static fInt fNegate(fInt X)
-{
-       fInt CONSTANT_NEGONE = ConvertToFraction(-1);
-       return fMultiply(X, CONSTANT_NEGONE);
-}
-
-static fInt Convert_ULONG_ToFraction(uint32_t X)
-{
-       fInt temp;
-
-       if (X <= MAX)
-               temp.full = (X << SHIFT_AMOUNT);
-       else
-               temp.full = 0;
-
-       return temp;
-}
-
-static fInt GetScaledFraction(int X, int factor)
-{
-       int times_shifted, factor_shifted;
-       bool bNEGATED;
-       fInt fValue;
-
-       times_shifted = 0;
-       factor_shifted = 0;
-       bNEGATED = false;
-
-       if (X < 0) {
-               X = -1*X;
-               bNEGATED = true;
-       }
-
-       if (factor < 0) {
-               factor = -1*factor;
-               bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this 
will cover the case of negative cancelling negative */
-       }
-
-       if ((X > MAX) || factor > MAX) {
-               if ((X/factor) <= MAX) {
-                       while (X > MAX) {
-                               X = X >> 1;
-                               times_shifted++;
-                       }
-
-                       while (factor > MAX) {
-                               factor = factor >> 1;
-                               factor_shifted++;
-                       }
-               } else {
-                       fValue.full = 0;
-                       return fValue;
-               }
-       }
-
-       if (factor == 1)
-               return ConvertToFraction(X);
-
-       fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), 
ConvertToFraction(factor));
-
-       fValue.full = fValue.full << times_shifted;
-       fValue.full = fValue.full >> factor_shifted;
-
-       return fValue;
-}
-
-/* Addition using two fInts */
-static fInt fAdd (fInt X, fInt Y)
-{
-       fInt Sum;
-
-       Sum.full = X.full + Y.full;
-
-       return Sum;
-}
-
-/* Addition using two fInts */
-static fInt fSubtract (fInt X, fInt Y)
-{
-       fInt Difference;
-
-       Difference.full = X.full - Y.full;
-
-       return Difference;
-}
-
-static bool Equal(fInt A, fInt B)
-{
-       if (A.full == B.full)
-               return true;
-       else
-               return false;
-}
-
-static bool GreaterThan(fInt A, fInt B)
-{
-       if (A.full > B.full)
-               return true;
-       else
-               return false;
-}
-
-static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
-{
-       fInt Product;
-       int64_t tempProduct;
-
-       /*The following is for a very specific common case: Non-zero number 
with ONLY fractional portion*/
-       /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
-       bool X_LessThanOne, Y_LessThanOne;
-
-       X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && 
X.full >= 0);
-       Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && 
Y.full >= 0);
-
-       if (X_LessThanOne && Y_LessThanOne) {
-               Product.full = X.full * Y.full;
-               return Product
-       }*/
-
-       tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); 
/*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
-       tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose 
some precision from decimal; */
-       Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 
bits that were part of the integer portion */
-
-       return Product;
-}
-
-static fInt fDivide (fInt X, fInt Y)
-{
-       fInt fZERO, fQuotient;
-       int64_t longlongX, longlongY;
-
-       fZERO = ConvertToFraction(0);
-
-       if (Equal(Y, fZERO))
-               return fZERO;
-
-       longlongX = (int64_t)X.full;
-       longlongY = (int64_t)Y.full;
-
-       longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
-
-       div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = 
Q(16,16) Back to original format */
-
-       fQuotient.full = (int)longlongX;
-       return fQuotient;
-}
-
-static int ConvertBackToInteger (fInt A) /*THIS is the function that will be 
used to check with the Golden settings table*/
-{
-       fInt fullNumber, scaledDecimal, scaledReal;
-
-       scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK 
THISSSS!!! */
-
-       scaledDecimal.full = uGetScaledDecimal(A);
-
-       fullNumber = fAdd(scaledDecimal, scaledReal);
-
-       return fullNumber.full;
-}
-
-static fInt fGetSquare(fInt A)
-{
-       return fMultiply(A, A);
-}
-
-/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
-static fInt fSqrt(fInt num)
-{
-       fInt F_divide_Fprime, Fprime;
-       fInt test;
-       fInt twoShifted;
-       int seed, counter, error;
-       fInt x_new, x_old, C, y;
-
-       fInt fZERO = ConvertToFraction(0);
-
-       /* (0 > num) is the same as (num < 0), i.e., num is negative */
-
-       if (GreaterThan(fZERO, num) || Equal(fZERO, num))
-               return fZERO;
-
-       C = num;
-
-       if (num.partial.real > 3000)
-               seed = 60;
-       else if (num.partial.real > 1000)
-               seed = 30;
-       else if (num.partial.real > 100)
-               seed = 10;
-       else
-               seed = 2;
-
-       counter = 0;
-
-       if (Equal(num, fZERO)) /*Square Root of Zero is zero */
-               return fZERO;
-
-       twoShifted = ConvertToFraction(2);
-       x_new = ConvertToFraction(seed);
-
-       do {
-               counter++;
-
-               x_old.full = x_new.full;
-
-               test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 
when shifted down */
-               y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
-
-               Fprime = fMultiply(twoShifted, x_old);
-               F_divide_Fprime = fDivide(y, Fprime);
-
-               x_new = fSubtract(x_old, F_divide_Fprime);
-
-               error = ConvertBackToInteger(x_new) - 
ConvertBackToInteger(x_old);
-
-               if (counter > 20) /*20 is already way too many iterations. If 
we dont have an answer by then, we never will*/
-                       return x_new;
-
-       } while (uAbs(error) > 0);
-
-       return x_new;
-}
-
-static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
-{
-       fInt *pRoots = &Roots[0];
-       fInt temp, root_first, root_second;
-       fInt f_CONSTANT10, f_CONSTANT100;
-
-       f_CONSTANT100 = ConvertToFraction(100);
-       f_CONSTANT10 = ConvertToFraction(10);
-
-       while (GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) 
|| GreaterThan(C, f_CONSTANT100)) {
-               A = fDivide(A, f_CONSTANT10);
-               B = fDivide(B, f_CONSTANT10);
-               C = fDivide(C, f_CONSTANT10);
-       }
-
-       temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
-       temp = fMultiply(temp, C); /* root = 4*A*C */
-       temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
-       temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
-
-       root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
-       root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
-
-       root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- 
Sqrt(b^2 - 4AC)]/[2] */
-       root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
-
-       root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- 
Sqrt(b^2 - 4AC)]/[2] */
-       root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
-
-       *(pRoots + 0) = root_first;
-       *(pRoots + 1) = root_second;
-}
-
-/* 
-----------------------------------------------------------------------------
- * SUPPORT FUNCTIONS
- * 
-----------------------------------------------------------------------------
- */
-
-/* Conversion Functions */
-static int GetReal (fInt A)
-{
-       return (A.full >> SHIFT_AMOUNT);
-}
-
-static fInt Divide (int X, int Y)
-{
-       fInt A, B, Quotient;
-
-       A.full = X << SHIFT_AMOUNT;
-       B.full = Y << SHIFT_AMOUNT;
-
-       Quotient = fDivide(A, B);
-
-       return Quotient;
-}
-
-static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to 
whole integers - Costly function */
-{
-       int dec[PRECISION];
-       int i, scaledDecimal = 0, tmp = A.partial.decimal;
-
-       for (i = 0; i < PRECISION; i++) {
-               dec[i] = tmp / (1 << SHIFT_AMOUNT);
-               tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
-               tmp *= 10;
-               scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 - 
i);
-       }
-
-       return scaledDecimal;
-}
-
-static int uPow(int base, int power)
-{
-       if (power == 0)
-               return 1;
-       else
-               return (base)*uPow(base, power - 1);
-}
-
-static int uAbs(int X)
-{
-       if (X < 0)
-               return (X * -1);
-       else
-               return X;
-}
-
-static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
-{
-       fInt solution;
-
-       solution = fDivide(A, fStepSize);
-       solution.partial.decimal = 0; /*All fractional digits changes to 0 */
-
-       if (error_term)
-               solution.partial.real += 1; /*Error term of 1 added */
-
-       solution = fMultiply(solution, fStepSize);
-       solution = fAdd(solution, fStepSize);
-
-       return solution;
-}
-
-- 
2.46.2


Reply via email to